ANL-7479

nne Aational Laboratory

TICAL AND EXPERIMENTAL STUDIES
'DOUBLE-PIPE COUNTER-FLOW
METAL HEAT EXCHANGERS

by




oratory are owned by the United States Govern-~
Atomic Energy
the University
grams formu-

The facilities of Argonne National Lab
ment. Under the terms of a contract (W-31-109-Eng-38) between the U S.
Commission, Argonne Universities Association and The University _°§ Chicago,
employs the staff and operates the Laboratory in accordance with policies and pro
lated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota University of Texas

Indiana University University of Missouri Washington University

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with re-
spect to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages re-
sulting from the use of any information, apparatus, method, or process disclosed
in this report.

As used in the above, "person acting on behalf of the Commission" in-
cludes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy $3.00® Microfiche $0.65




ANL-7479
Engineering and
Equipment

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

ANALYTICAL AND EXPERIMENTAL STUDIES
OF DOUBLE-PIPE COUNTER-FLOW
LIQUID METAL HEAT EXCHANGERS

by

Ray Wilford Brown, Jr.

Reactor Engineering Division

Based on a T;xesis
Submitted to the Faculty of the Graduate School,
University of Notre Dame,
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

August 1968






TABLE OF CONTENTS

B R B e astaliin il o o o v w3 L B R AT

S e e B SR D e R s oM S A

CHAPTER:

{3

11 5

L

8 %

L S e e I P e e P SR oy S N R

A. Liquid Metal Heat Transfer in Individual Pipes and
L R e R R s B A s o S B S S

B. Recent Theoretical Developments in Double-pipe Heat
g s it e ek S o et § e e

C. Experimental Investigations of Liquid Metal Heat Transfer
in Double~pipe Heat Exchangers, . « « « « s s s o562 0 008

D= Thsrmni-~contact Resiatance . . . ¢ v v vn sisas o ne oo e

syl 0T BIG G T T
B Approximation for Turbulent FIOW . ., . . v o v o v 2o s o o u
GnCanmtation for Plug-flow Case. « « v « v st o v vowave s s o s
D

Comparison of Plug-flow Solutions for Narrow and
Nonnarrow Annulax Spaces . . . « « v ¢ s s v o s s s s s soosos

E. Numerical Results for Plug-flow Model. . . ... ........
SRR I EINTAL PROGRAM o0 5 vre s o0e o0 86 a0 u e oib s, v e

S - Ramerisneatal ApPrORORS . iivin e e movnne v % sk me 5 s v b
e et ental DR TREIE - o T s s e e e e s ee e e AR
e e anontil TP POCRaUPe | Thuli oo e sl e e s Bhaiinie e b
o 8

Analysis of Experimental Measurements. . . ..........
B S AND DISCUSSION . . . . . . is s s vsisns s s nsnesa

A. Heat-exchanger Calculations. . . . .................

20

23

25

26

26
44
53

57

59

66

66
68
74
77

81

81



TABLE OF CONTENTS

B. . Experimental Results . i i s e v« o e i SAGEEERES R el n

C. Comparison of Theory and Experiment. . . . . ... ... ...

D, DRBeMEBION: o i s v o5 oonnin nowow s b & BRSNS R R EENSES e

VI. SUMMARY

NVII, RECOMMENDATIONS . . . <« v o » o s o 4o o are s jotaaolsleiiee ot

APPENDIXES:

Details

MY oWy

of Mathemzitical ANalysis . . . . o= s siscstclelelotaty

Rleductiontof Dallel ot aue oon e stmn »nl« 5 w5 siacihaintaNsEe s
Tablilation 'of Experimental Data .. . . .6 <0 5aa s eR it aNe
Construction of Experimental Apparatus, . .. ..., 0. ..

Analysis: of Experimental EXrors . . . . . . » s s faiiiens

ACKNOWHE RGNS c 0. (0 ahss)ie o oc e s o e e o e im0 D RN

BIBLIOGRAPHY

83
85
88

91

935

109
113
123
128

135

136



No.

1.

1.

<10

.11,

- 12.

wl3.

LIST OF FIGURES

Title

Ratio of Nusselt Number at Uniform Heat Flux to Nusselt
Number at Uniform Wall Temperature vs. Reynolds

L D AR S A S R e Sy < B

Thermal-entry Length for a Pipe at Uniform Wall

ST e By O S S RS R A S

Hsat-sxchanger Configurdtion . . v s 5 e e s v o s s n's o5 s nisne

kf vs. Peclet Number for Various Nusselt Number

S TR e e e TR S S Sl e R G e

kf vs. Peclet Number for Various Nusselt Number

BT e et e R N R R A R P T SRS LT

Nusselt Number vs. Length Predictions, Uniform Surface

Temperature in Parallel Plane Channel. . . . . . . ¢« ¢ ¢ s 0 s o

Effectiveness Coefficient vs. Efficiency for Various Values

gl AR S g A TR SN S GRS TE N T

Comparison of Tube-side Nusselt Numbers Computed from

Solutions for Narrow and Nonnarrow Annular Spaces . .. ...

»
Comparison of Annulus-side Nusselt Numbers Computed

from Solutions for Narrow and Nonnarrow Annular Spaces . .

Comparison of Overall Nusselt Numbers Computed from

Solutions for Narrow and Nonnarrow Annular Spaces . ... ..

Comparison of Efficiencies Computed from Solutions for

Narrow and Nonnarrow Annular Spaces . . . . . ... .00 ...

Normalized Tube-side Nusselt Number vs. Flowrate Ratio . .

Normalized Annulus-side Nusselt Number vs. Flowrate

Normalized Overall Nusselt Number vs. Flowrate Ratio. . . .

Normalized Tube-side Nusselt Number vs. Relative Wall

R T S R O R T < PG S

Page

12

26

51

51

51

5T

58

58

58

58

60

60

60

60



No.

3.14.

4.2.

4.3.

4.4.

4.5;

4.6.

A0

bels

5.2,

b33

LIST OF FIGURES

Title

Normalized Annulus-side Nusselt Number vs. Relative

Wall Thermal Resistance

Normalized Overall Nusselt Number vs. Relative Wall

PhermalllRebis tanic el s 488400 a0 NI =Rt R aR e e
Effectiveness Coefficient vs. Heat-exchanger Efficiency. . . .

Heat-exchanger Efficiency vs. Number of Transfer Units--

Based on NUTUHF

Comparison of Heat-exchanger Lengths Computed from
Present Analysis and from Uniform-heat-flux Analysis

Local Nusselt Number vs. Axial Position. . . . .. ... ... ..
Piapram: of Flow Cireuit . oo w0700 o fe s S Termi-te el s it
Design of ZO-L/Dl Test Section & « v « a isia s ate ket 8 e
Design of 47- and IO-L/Dl Test SectioniB - ¢ sin ws cis s o ain s

Effect of Fluid Inlet Temperature Difference on Efficiency
for the ZO-L/Dl TesE Seckion « + « + » » e iiwinlvs aralatele Ol cren s

Effect of Fluid Inlet Temperature Difference on Fully
Developed Overall Nusselt Number for the 20-L/D, Test
Sections«ts e nte @i - b o s S0 o e 5 B L RaTRE TR R S e

Outer-wall Temperature Plot for Test Section in Which Heat
Transfer 1s Fully Developed : « & « 7555 s ¢ s s o sls o olauilebens

Outer-wall Temperature Plot for Test Section in Which Heat
Transfer Is.Not Fully Develaoped. 5. ic o ¢ L6500 CuSt N

Experimental Results for Overall Nusselt Number with the
47-L/D; Test Section, Pes = 50: + & « « «.it e e s ot SENEREE it

Experimental Results for Overall Nusselt Number with the
47-L/D; Test Section, Pez = 100. .gs = =« (SSISISICEEEERIE: ¢ o o

Experimental Results for Overall Nusselt Number with the
47-L/D, Test Section, Pey; =200, « o o s s e na st o s e ee.y

Page

60

62

64

64
65
69
71

72

78

78

80

80

85

85

85



5.4.

L

5.6.

Oele

5.8.

5.9.

LIST OF FIGURES

Title

Experimental Results for Overall Nusselt Number with the
47-L/D, Test Section, Pe; =300. . . . ..o vvvvvneunnnnn

Experimental Results for Efficiency with the 47-L/D, Test
R T = ) o e e e s s e s . W e e e e RletaTerale s

Experimental Results for Efficiency with the 47-L/D, Test
L P T e e o S S S S SR P S

Experimental Results for Efficiency with the 47-L/D| Test
P e = AR T 0 5 bois v & v 8w RS e Bl

Experimental Results for Efficiency with the 47-L/Dl Test
T R e | e e s PO WAL 3 e <

Experimental Results for Efficiency with the lO-L/D, Test
Bection, Py = 90 o cis «wivie 30l o G LSRN0 S e e el e

Experimental Results for Efficiency with the lO-L/D, Test
DEcHiom. I¥8s = BOD G S e G a e e s e b s b S Tk e e lea

Experimental Results for Efficiency with the lO-L/D, Test
pection, Fee = 800 . . s oo st WGP W ale hiiatelme vk

»
Experimental Results for Efficiency with the lO-L/D, Test
Bection, e = 300 0, e e e G e e e e e

Page

87

87

87

87

88

88

88

88



LIST OF TABLES

Title

Fully Developed Heat Transfer Coefficients for Liquid
LR s ats Toiis anr ita A ATl b e Lo oia o e e RS Redh ette Set SN Rn SRR

Heat Transfer Experiments with Liquid Metal Heat
157 o) v R o A AR M M RN e s

Convergence of Expansion Coefficients for Narrow Annular

ST e R R R iR SR SRR SRR B ot C U S
Behavior of Coefficient Matrix Elements . . . . . . . ¢« cc oo

Maximum Error of Narrow-Annular-Space Approximation for
Range of Parameters Investigated. . . . . .. ... ..o

Computations for ¢pp and 7 for a Narrow Annular Space. . .
Dimensionless Parameters for the Test Sections. . . .. .. ..
Results of Computations for Test Sections . . ... ...... ..
Experimental Results with the 47-L/D1 Test Section, <« =« « ¢ s
Experimental Results with the lO-L/D, Test Sectiof .o Arsees

Heat-exchanger Lengths Predicted by Present and
Lraditionall ARV Ba iy i nisiliie et n o i ale e anatiy ey SORk

Basic Experimental Data for 47-L/D, Test Section. . » % waie. s
Outer-wall Temperature Data for 47-L/D1 Test Sections ...
Basic Experimental Data for IO-L/DI Tesat Section. s el
Expected Maximum Error for Efficiency .. ............

Expected Maximum Error for Nusselt Number

Page

21

54

55

5y

63

81

83

84

84

120

131

134









10

Symbol
An

Bi{}

Tir 0
Tio
T

NOMENCLATURE
Discritin Symbol Description

Expansion coefficient associated with nth negative eigenvalue le Local bulk temperature in channel i, °F y
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Local heat transfer coefficient in channel i, Btu/hr-ft-°F z* Dimensionless axial space variable used in turbulent-flow
Modified Bessel functions of first kind approximation
Bessel functions of first kind Greek Letters
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ANALYTICAL AND EXPERIMENTAL STUDIES
OF DOUBLE-PIPE COUNTER-FLOW
LIQUID METAL HEAT EXCHANGERS

by

Ray Wilford Brown, Jr.

ABSTRACT

An analyticaland experimental study of heat transfer
in countercurrent, liquid metal, double-pipe heat exchangers
is presented. The mathematical treatment is based on an
exact solution of the basic energy equation rather than on the
"traditional" practice of assuming the heat transfer coeffi-
cients of individual channels to be uniform and equal to a pre-
determined value. The solution presented herein is actually
an extension of the classical "Graetz" problem to boundary
conditions appropriate to heatexchangers. The analysis re-
sults ina solution for the fluid temperature profiles over the
entire length of the heat exchanger, including the thermal-
entrance regions. The mathematical analysis was used to
compute heat-exchanger efficiencies and heat transfer co-
efficients. The analytical results indicate that the traditional
method of heat-exchanger design could lead to inaccuracies
when applied to liquid metal heat e:.cchangers.

An experimental program to obtain performance
curves for liquid metal heatexchangers was conducted, using
a promising new technique for measuring overall heat trans-
fer coefficients. The experimental results supported the
results of the mathematical analysis, particularly for short
heat exchangers, in which most of the heat transfer occurs
in the thermal-entrance regions.

CHAPTER I
INTRODUC T TION

Liquid metals are generally superior to nonmetallic fluids as heat
transfer media because of their higher thermal conductivity, lower vapor
pressure, and the fact that they remain in the liquid state over a wider tem-
perature range. For these reasons, recent intense technological interest
has developed in liquid-metal heat transfer for application to the design of
liquid-metal-cooled nuclear reactors and for their use as working fluids in
space power plants where small equipment size is essential.
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One of the simplest of devices for the transfer of heat between two
fluids is the double-pipe heat exchanger. Aside from its usefulness as a
practical heat-exchange apparatus, its simple geometry makes it an ideal
model for basic heat transfer investigations, both experimental and analyt-
ical. Design of such heat exchangers for practical applications is usually
based on two essential assumptions. These two assumptions, which will
be hereafter referred to as the "traditional method of heat exchanger
design," are:

(1) The heat transfer coefficients of individual channels, tube and
annulus, are relatively insensitive to the heat flux or temperature distri-
bution along the length of the heat transfer surface.

(2) Thermal-entrance effects are negligible, and the heat transfer
coefficients are uniform over the entire length of the heat exchanger.

For turbulent forced convection in nonmetallic fluids, the above
assumptions lead to sufficiently accurate results for practical applications
but may not always be valid when applied to liquid metals. Sleicher and
Tribus! have illustrated the differences between turbulent forced convec-
tion with nonmetallic fluids and liquid metals by comparing their heat
transfer coefficients. Figure 1.1 from a graph in Ref. 1, shows the ratio
of uniform-heat-flux Nusselt numbers to uniform-wall-temperature Nusselt
numbers for nonmetallic fluids and liquid metals flowing in a tube. It is
evident from the graph that the heat transfer coefficients of liquid metals
are strongly influenced by boundary conditions. Sleicher and Tribus also
compared thermal-entry lengths for nonmetallic fluids and liquid metals
flowing in a pipe with a uniform-wall-temperature boundary condition.
Figure 1.2, also from a graph in Ref. 1, shows that the thermal-entry
lengths required for the heat transfer coefficients of liquid metals to be-
come fully developed can be much larger than those for nonmetallic fluids.

UABLAL NI B RS0 e ALY |
60 [~ DIAMETERS FROM THERMAL &',5_
T ¥ T [ ENTRANCE REQUIRED FOR Nu TO ]
° PRANDTL 50 — REACH 1 02 Nu (@) 02 o
E 14 -0 o
@ <<’° I -
w =
E LIQUID METALS 0,008 Y30
gie NONS \ |
5 METALLIC ool 320
l‘;“ FLUIDS 0.03 - L%
g 10 10 :_— -
= 1 L | 5 z
104 10® 108 104 108 108
REYNOLDS NUMBER REYNOLDS NUMBER
Fig. 1.1. Ratio of Nusselt Number at Fig. 1.2. Thermal-entry Length for a
Uniform Heat Flux to Nusselt Pipe at Uniform Wall Tem-
Number at Uniform Wall perature (from Ref. 1)

Temperature vs. Reynolds
Number (from Ref, 1)



The results of Sleicher and Tribus indicate that the validity of the
traditional method of heat-exchanger design for application to liquid metals
deserves to be questioned. The present investigation, both analytical and
experimental, considers liquid-metal heat transfer in countercurrent
double-pipe heat exchangers. No use is made of the traditional assump-
tions in either analysis or experiment, the purpose being to provide an
exact prediction of performance of the double-pipe heat exchanger and to

investigate the range of validity, if any, of the traditional method when used
for liquid metals.



CHAPTER 1I
LITERATURE SURVEY

A. Liquid Metal Heat Transfer in Individual Pipes and Annuli

During the past twenty-five years, most of the research in liquid metal
heat transfer has been concerned with finding reliable relationships for heat
transfer in pipes and annuli. These investigations considered boundary con-
ditions of specified wall heat flux or temperature; most of the analytical
work related to fully developed heat transfer paralleling the analysis of
Martinelli.> The main object of this early research was to determine heat
transfer coefficients for use in the traditional method of heat-exchanger de-
sign. Surveys of this phase of liquid metal heat transfer can be found in heat
transfer texts, such as Refs. 3 and 4, and a detailed review will not be given
here. Instead, attention will be focused on research on double-pipe heat ex-
changers whose boundary conditions cannot be initially specified except in
certain limiting cases. Consistent correlations for fully developed heat
transfer coefficients in pipes and annuli are of some interest, however, for
comparison with the results of the present analysis and for use in calculating
quantities associated with a turbulent-flow approximation. Table 2.1 gives
the correlations of Buleev® and Dwyer"s for fully developed Nusselt numbers

TABLE 2.1. Fully Developed Heat Transfer Coefficients for Liquid Metals

Author Ref. Heat Transfer Coefficient Predicted Equation

Solutions for Turbulent Flow

Buleev 5 Fully developed Nusselt number in a circular Nu = A + 4.16(Re/1000/™ Pr0.66 .12
tube with uniform wall heat flux

>

<25+ 13 logyg [1~ P‘—']

3

1
~ 0.865 - 0.051 logyg [l + p—']

Dwyer 678 Fully developed Nusselt number in a concentric No - a2+ 2 L oomgre” G0 @b
annulus with uniform heat flux from the inner
wall and an insulated outer wall 0.662
Nu - 498 + R y<0
= 182
v 1
Pr (€w/V) Max

(EWY)max - 4.0 + 0.0029Re0.919
y - 0.758/R0.053

Solutions for Plug Flow

Trefethen u Fully developed Nusselt number in a circular Nu - 8 1)
tube with uniform wall heat flux

Eckert and L} Fully developed Nusselt number in a circular Nu - 5783 1
Drake tube with uniform wall temperature
- - R2|
Trefethen U Fully developed Nusselt number in a concentric Nu = M— 2.1e
annulus with uniform heat flux from the inner -RIRY-4RZ 43+ 4 EnR)
wall and an insulated outer wall
Merriam 3 Fully developed Nusselt number in a concentric Annulus Annulus @
annulus with uniform wall temperature at the Ratio Nu Ratio Nu
inner wall and an insulated outer wall ® 0.1 10.833 07 5
0.25 6.966 08 5.067
04 5.907 09 4.9%
05 5.555 10 4935
06 5328
Trefethen u Fully developed Nusselt number in a parallel- Nu -6 219

plate channel with one wall insulated and
uniform heat flux at the other wall




in uniformly heated pipes and annuli. The results of Buleev and Dwyer are
considered by the present author to be more accurate than other correla-
tions available in the literature’ !? because of their better agreement with
experimental data. In a recent review of liquid metal heat transfer, Dwyer
has indicated that Eqs. (2.1a) and (2.1b) are probably the most accurate.
Also included in the table are solutions for plug flow for the boundary con-
ditions of uniform wall heat flux and uniform wall temperature. All of the
Nusselt numbers in Table 2.1 are defined with respect to the equivalent
hydraulic diameter of the channel.

B. Recent Theoretical Developments in Double-pipe Heat Exchangers

Recently, theoretical analyses of heat exchangers without a predeter-
mined boundary condition for the inner wall have appeared in the literature.
Bentwich and Sideman'® analyzed a system equivalent to a cocurrent double-
pipe heat exchanger in which two immiscible fluids were flowing inside a
pipe with a definite interface between them. Ting!* and Lightfoot!® considered
a heat exchanger in which the heat transfer coefficient in only one channel
was specified. Stein'® later used this model to approximate heat transfer be-
tween a liquid metal and a nonmetallic fluid. He presents an extensive re-
view of recent theories of heat transfer in symmetrical ducts and includes
a discussion of double-pipe exchangers.

The most general mathematical treatment of heat transfer in double-
pipe heat exchangers is that of Stein'” and will be presented first to introduce
the reader to the mathematical treatment used in other more restricted
analyses. Other analyses of double-pipe heat exchangers reviewed in this
chapter are actually special cases of the general case treated by Stein.
Stein's analysis considered both cocurrent dnd countercurrent flow, various
symmetrical duct geometries, and was generalized to include laminar or
turbulent flow. No simplifying assumptions regarding the heat transfer co-
efficients in individual channels were used. The idealizations upon which the
analysis depended are listed below,

1. Physical properties were independent of temperature.
2. The fluid flow was fully developed and incompressible.

3. The flow channels were symmetrical in the sense that only two
orthogonal space coordinates, one of which denoted axial dis-
tance, were required for the mathematical formulation.

4. Longitudinal heat conduction and longitudinal turbulent heat
diffusion in the fluids were negligible.

5. Longitudinal heat conduction in the heat-exchanger walls was
negligible.

6. The fluid inlet temperatures were uniform.

7. Frictional heating was negligible.
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Stein's analysis was, in effect, an extension of the classical Graetz
problem to boundary conditions appropriate to heat exchangers. In particu-
lar, a technique of separation of variables applied to energy equations written
for both channels of the heat exchanger led to a solution for the temperature
distribution of the form

z CnEi,n
n

where i denotes the channel (1--tube; 2--annulus). The eigenfunctions, Ej p,
and eigenvalues, )4, were defined by a "two-region," tube and annulus,
Sturm-Liouville problem. The expansion coefficients, C,, were determined
by the inlet and outlet conditions of the heat exchanger. For the cocurrent
case, the temperature distribution in each channel was expressed by an in-
finite series of terms associated with positive eigenvalues only, and the
above summation was from n = 0 to +w. For the countercurrent case, the
temperature distributions were expressed by an infinite series of terms
assoclated with negative as well as positive eigenvalues, and the above sum-
mationwas fromn = -« to +w. Equations defining the heat-exchanger effi-
ciency for both cocurrent and countercurrent flow were presented.

Also presented were expressions for determining fully developed or
"asymptotic” heat transfer coefficients. For cocurrent flow, the fully de-
veloped Nusselt numbers were found to be proportional to the first nonzero
eigenvalue. For countercurrent flow, the fully developed Nusselt numbers
were proportional either to the first negative eigenvalue or to the first posi-
tive eigenvalue, depending on whether the ratio of heat capacity to mass
flowrate, H, was less than or greater than unity. It was pointed out that
while fully developed heat transfer only occurs near the exit end of a co-
current heat exchanger, it may occur at either end or along the center of
a countercurrent heat exchanger.

A quantity called the "effectiveness coefficient,” previously intro-
duced by Stein,'® was suggested for use in computations for heat-exchanger
design.

Calculation of eigenvalues, eigenfunctions, and expansion coefficients
for the cocurrent case entailed a straightforward application of the equations
defining these quantities as given by the analysis. The calculation of the
eigenvalues and eigenfunctions for the countercurrent case was also straight-
forward, but calculation of the expansion coefficients required the solution
of an infinite set of algebraic equations. This unusual aspect of the mathe-
matical problem results from the fact that the countercurrent heat exchanger
has outlet temperature distributions at each end which are unknown. As a
result, when orthogonal expansions which defined the expansion coefficients
were written at either end of the heat exchanger, they contained the unknown
outlet temperature distributions. To overcome this difficulty, orthogonal
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expansions were written for both ends of the heat exchanger. The relation-
ships so obtained for C,, were then added and combined in such a way that
an infinite set of linear algebraic equations was obtained which defined the
expansion coefficients. Nunge and Gill'®'?° first used this same general
method, but their procedure for combining the orthogonal expansions was
different. A discussion of the actual computations necessary to find the
expansion coefficients will be included in a later section.

The practical aspects of the analysis were explained with special
emphasis on the importance of the effectiveness coefficient in the design
of practical heat exchangers.

A limited number of computed values of the effectiveness coefficient
and fully developed overall Nusselt number were presented for the cases of
a laminar-flow cocurrent double-pipe heat exchanger and a plug-flow coun-
tercurrent double-pipe heat exchanger. These results indicated that the
actual performance of a heat exchanger could be quite different from that
predicted by specifying a uniform heat flux or uniform temperature inner
wall boundary condition. It must be pointed out that the analysis presented
in Ref. 17 is not valid for countercurrent flow when H = 1. For H = 1 cer-
tain terms in the solution become mathematically indeterminate and must be
treated in another manner.

Stein?® has recently extended the analysis in Ref. 17 to include the
case of equal heat capacity-mass flowrates. Stein's solution considers the
limit of the mathematically indeterminate terms as H approaches unity. It
was shown that these mathematically indeterminate terms have a finite value
and that their mathematical form can be det‘ermined. The analysis was gen-
eralized to include both laminar and turbulent flow, and various geometrical
configurations. It was shown that, for H = 1, fully developed heat fluxes are
always uniform, whereas local heat fluxes in the thermal-entrance region
may be quite nonuniform. As the thermal resistance at the inner wall was
increased, it was found that heat-flux distributions in the thermal-entrance
region approach uniformity.

The author illustrates that for a small-wall thermal resistance,
significant errors can result when it is assumed that the heat flux is uniform

over the entire length of the heat exchanger.

1. Cocurrent Heat-exchanger Analyses

Stein!®’?% presented solutions for heat transfer in cocurrent-flow

double-pipe heat exchangers. The analyses were applied to models of lami-
nar and plug flow. To account for the effect of turbulence, an approximation
(this will be referred to as the "kt approximation" and will be explained in
detail later) was introduced which extended the accuracy of the plug-flow
model for liquid metals up to Peclet numbers of 1000. Numerical results
were presented for a double-pipe heat exchanger with a narrow annular space
and also a parallel-plate configuration.
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Merriam?® in a combined analytical and experimental investiga-

tion of liquid metal, cocurrent flow, double-pipe heat exchangers extended
the analyses of Stein'®’?% to include heat exchangers with nonnarrow annular
spaces. A plug-flow model was used together with the kt approximation of
Stein to predict local and fully developed heat transfer coefficients.

In general, the values calculated from the theory using the
kT approximation showed agreement with the experimental data. The experi-

mental part of this investigation will be reviewed in more detail later.

2. Analyses of Countercurrent Heat Exchangers

Nunge and Gill!? presented a mathematical solution for heat
transfer in a laminar, parallel-plate, counter-flow heat exchanger. The
model used was highly idealized and consisted of two identical laminar-fluid
streams in counter flow between parallel plates. A zero-thickness, zero-
thermal resistance plane was postulated to separate the two streams; this
allowed formulation of the problem in a single region with a continuous
velocity distribution which changes sign at the interface between the fluid
streams. This way of formulating the problem permitted a direct applica-
tion of the theorem in Appendix A, pertaining to the existence of the negative
eigenvalues. Stein'® originally had to assert the existence of the negative
eigenvalues from physical arguments. The individual eigenvalues and eigen-
functions were calculated by a numerical integration of the two-region Sturm-
Liouville system. To find expressions for the expansion coefficients, the
authors wrote orthogonal expansions for each end of the heat exchanger.

The relations so obtained for the expansion coefficients each contained an
unknown temperature distribution. To eliminate these unknowns, the two
expressions were equated and, after some manipulation, an infinite set of
linear algebraic equations which defined the expansion coefficients was ob-
tained. Differences in this method for computing the expansion coefficients,
the "Nunge-Gill" procedure, and the method used in Ref. 17, the "Argonne"
procedure, are discussed by Stein.??

Solution of the infinite set of linear algebraic equations was
accomplished by truncating the higher-ordered terms and solving the re-
maining finite set by a Gauss-Jordan reduction. The number of equations
actually used by the authors in calculating the expansion coefficients could
not be determined. Since only three values of positive and negative eigen-
values were reported, it seems likely that these were all that were used.

In order to check the computations, a finite-difference technique
was applied to the basic energy equation to compute fluid temperature pro-
files, and the results were compared with temperature profiles computed
from the series solution. The finite difference technique was a modification
of that developed by King.?* Agreement between the two solutions was good
for the central portion of the heat exchanger, but showed discrepancies near
the heat-exchanger ends, probably due to the small number of terms used in
the series solution and/or inaccuracies in the expansion coefficients,



Nunge, Gill, and Stein?! extended the previous analysis of a lami-
nar, parallel-plate, countercurrent heat exchanger to include different fluid
stream properties and a wall separating the two fluid streams. The Nunge-
Gill procedure was used to compute the expansion coefficients. The paper
has not been published, mainly because of difficulties associated with the
method of computing the expansion coefficients. These difficulties are dis-
cussed in detail in Ref. 25.

Nunge and Gill?® also presented a solution for a laminar, coun-
tercurrent, double-pipe heat exchanger. The method of solution used in the
previous two papers was modified to fit the geometry of the double-pipe
configuration.

Stein®® has questioned the accuracy of the procedure used in the
preceding three papers for calculating the expansion coefficients. Extensive
calculations of heat transfer in a parallel-plate, countercurrent heat ex-
changer using a plug-flow model were made. The calculations revealed
serious difficulties in the solution of the truncated set of linear equations
using the method of the three previous papers, i.e., the Nunge-Gill proce-
dure. These difficulties were for the most part resolved when the Argonne
procedure was used for calculating the expansion coefficients. This proce-
dure was originated by the present author as part of the research of this
thesis and is described in detail in Appendix A.

It was pointed out that in order for the solution of an infinite set
of equations to be meaningful, the lower-ordered solutions must converge to
a definite value as more and more equations are added to the set. If a differ-
ent solution is obtained for each new equation added, the system of equations
does not have a unique solution. Stein suggests that the system of equations
solved by Nunge and Gill in Refs. 19 and 20 may not have a unique solution
or that an insufficient number of equations was used to obtain convergence.
It was noted previously that the number of equations used in the calculations
could not be determined nor was any mention of convergence made.

Attempts to use the Nunge-Gill procedure always resulted in
ill-conditioned sets of equations, and, as a result, could not be used when
more than a few equations of the set were included. The Argonne procedure
always resulted in a well-conditioned set of equations. The coefficients con-
verged uniformly as new equations were added to the set although conver-
gence in the third to fifth decimal place was slow.

Stein presented a table comparing the optimum results of the
Nunge-Gill procedure with the results of calculations made with the alterna-
tive procedure. It was noted that in all cases the Argonne procedure yielded
consistently better results than the Nunge-Gill procedure. In many cases,
the Nunge-Gill procedure failed completely.

Nunge?® presented an analysis of heat transfer in laminar-flow
heat exchangers. The analysis followed the work reported in Refs. 19, 20,
and 21. A discussion of the convergence of the Nunge-Gill procedure as
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more equations of the infinite set were used was included. Computations
were performed for increasing numbers of equations up to a maximum of
seven. A single example was given for which the "zeroth" order expansion
coefficient converged to accuracy in the second decimal place when seven
equations were used for the computation. It was not reported whether or not
this was the maximum accuracy obtainable.

C. Experimental Investigations of Liquid Metal Heat Transfer in Double-
pipe Heat Exchangers

Most experimental analyses of liquid metal heat transfer have been
concerned with measuring heat transfer coefficients in individual pipes and
annuli for a specified boundary condition. These investigations employed
one of two basic types of test section, the first type being an electrically
heated tube or annulus, and the second type a double-pipe heat exchanger.
The assumption was usually made that the operating conditions of the heat
exchanger could be controlled to achieve the desired boundary condition for
the inner wall. It was generally assumed that if the ratio H of heat capacity
to mass flowrate was unity, then a uniform-heat-flux boundary condition was
obtained if the fluid was in counter flow, and a uniform-wall-temperature
boundary condition was obtained if the fluid was flowing cocurrently.

The majority of the experimenters using double-pipe heat exchangers
measured either average or fully developed overall heat transfer coefficients.
An assumption about the value of the ratio of the tube-side coefficient to the
annulus-side coefficient was made and then these coefficients were calculated
from the overall coefficient. Theoretical relations such as those of Lyon!®
and Werner!! were used for predicting the heat-transfer-coefficient ratio for
individual channels.

Most of the experiments have been reviewed extensively by Lubarsky
and Kaufman?’ and Merriam,?? so a detailed survey will not be given here,
Table 2.2 summarizes the more important heat-exchanger experiments
pertinent to the present work.

As stated before, the prime objective of these experiments with heat
exchangers was to measure heat transfer coefficients. The only investiga-
tion known to the present author which attempted to analyze double-pipe
heat-exchanger performance more generally was that due to Merriam.?* The
experimental part of this paper will be reviewed in greater detail now,

Merriam??® experimentally investigated the performance of a cocurrent,
liquid metal, double-pipe heat exchanger by measuring efficiencies and fully
developed heat transfer coefficients. A new method suggested by Stein* was
used to measure the overall fully develc;ped heat transfer coefficient. The
method required a measurement of the outer-wall temperature distribution
along the length of the heat exchanger. A plot of this outer-wall temperature
vs. length on semilog paper produced a curve which was linear in the fully



TABLE 2.2. Heat Transfer Experiments with Liquid Metal Heat Exchangers

Approximate
Heat- Heat Heat- Heat-exchanger Inner Wall
exchanger Transfer exchanger Length (Based on Boundary Heat Transfer
Ref. Author Type Fluids Material  Diameter of Tube)  Condition  Coefficient Determined -
30 Giltitland Double-pipe, Hg in tube, steam Nickel “L/o uwt Overall average Possibility of thermal-contact resistance present. Data are lower than
etal. (1947) condenser in annulus predicted by theory.
{heating data)
0 Gilliland Double-pipe, Hg in tube, H0 in Nickel 160L/0 Uncertain Overall average Data are lower than predicted by theory.
etal. (1947) countercurrent annulus
{cooling data)
1 Werner Double-pipe, NaK in tube and UHF Overall average Flowrates in tube and annulus were equal for all tests. Data taken from
al. (1949) countercurrent annulus Test Sec. 1 show scatter which can be traced to insufficient mixing of fluids
est Sec. 1 Stainless steel 50L/0 before bulk-temperature measurement. Mixing baffles were installed for
Test Sec. 2 Nickel 43L/0 Test Sec. 2. Data for Test Sec. 2 show good agreement with theory.
3l Elser (1949) Double-pipe, Hg in tube, Hz0 in UHF Fully-developed Uncertainty about the of wall ther poor flow
Test Sec. 1 countercurrent annulus Low carbon 120L/0 techniques, and presence of a thermal-contact resistance combine to make the
steel data unreliable. Results were approximately 50% below the prediction of the
Test Sec. 2 Stainless steel 123L/0 theory.
Test Sec. 3 Stainless steel 146 L/D
10,32 Lyon (1949) Double-pipe, NaK in tube and Nickel UHF Overall average Flowrates in each channel were equal for all tests. Data show good agree-
Test Sec. 1 countercurrent annulus 1oL/ ment with theory.
Test Sec. 2 98L/D
Test Sec, 3 6L/0
Test Sec. 4 160L/0
3 Seban (1950) Double-pipe, Pb-Bi in tube and . UHF Overall average Mass flowrates in tube and annulus were equal for all tests. Results for
Test Sec. 1 countercurrent annulus Stainless steel Test Secs. 1.and 2 showed much scatter and were approximately 50% below
Test Sec. 2 Low carbon theory, probably due to contact resistance. Tinned test sec. results were
steel much better and within 15% of theory.
Test Sec. 3 Tinned steel
E) Trefethen Double-pipe, Hg in tube and UHF Overall average Mass flowrates in tube and annulus were equal for all tests. Data show good
(1950) countercurrent annulus agreement with theory. No difference was noted for different test sec. materials
Test Sec. 1 Stainless steel 55L/D
Test Sec. 2 Stainless steel 53L/0
Test Sec. 3 Stainless steel 67L/0
Test Sec. 4 Copper 5LID
Test Sec. 5 Copper 127L/0
Test Sec. 6 Copper 92L/0
» Doody and Double-pipe, Hg in tube, H0 in Steel 100L/0 Uncertain Average Data are probably inaccurate due to large experimental errors. The addition of
Younger (1951)  cocurrent and annulus small amounts of Na to the Hg increased the heat transfer coefficients by as
countercurrent much as 100%.
» Lubar sky Double-pipe, Pb-Bi in tube and Stainless steel 100L/0 UHF Overall average Data were slightly lower than theory. No difference was noted when magne-
951 countercurrent annulus sium was added to the lead-bismuth,
n Bailey Double-pipe, Hg in tube, H 0 in Low carbon qa/o Uncertain Fully-developed Data obtained were about 60% lower than that predicted by theory, due probably
etal. (1952) cocurrent annulus steel 1o the existence of a thermal-contact resistance between the Hg and the tube.

The data are not considered reliable.
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TABLE 2.2. (Contd.)

Approximate

Heat- Heat Heat- Heat-exchanger Inner Wall
exchanger Transfer exchanger Length (Based on Boundary Heat Transfer

Ref. Author Type Fluids Material Diameter of Tube) Condition Coefficient Determined Remarks

38 Hall and Double-annulus, Sodium in both Low carbon 480 L/D (Based UHF Overall average Flowrates in tube and annulus were equal for all runs. Good agreement with
Jenkins (1955) countercurrent annuli steel on hyd. dia. of theory for round tubes. No difference between heat transfer coefficients for
(sodium data) inner annulus) Na and NaK was found.

38 Hall and Double-annulus, NaK in both Stainless steel 120L/D (Based UHF Overall average Flowrates in tube and annulus were equal for all runs. Good agreement with
Jenkins (1955) countercurrent annuli on hyd. dia. of theory for round tubes. No difference between heat transfer coefficients for
(NaK data) inner annulus) Na and NaK was found.

» Brown etal. Double-pipe, Hg in tube, Hy0 in Nickel 150L/0 UHF Local, fully Velocity and temperature distributions were measured and used to calculate
(1957 countercurrent annulus developed eddy diffusivities. Heat transfer measurements showed fair agreement with

theory.

4 Baker and Double-pipe, NaK in tube and Stainless steel  88L/D UHF and Overall average Data show excellent agreement with theory for uniform heat flux. No difference
Sesonske countercurrent annulus variable was noted for different flowrates in each channel, due probably to the fact that
(1960) heat flux the flowrate ratio did not vary significantly.

41 Andreev and Double-pipe Carbon steel 50-60 L/D Average Heat transfer fluids were continuously cleaned during experiment. Data
Kalachev and stainless show excellent agreement with theory.
(1963) steel
Test Sec. 1 Heavy metal in uwr

: tube to boiling
water in annulus
Test Sec. 2 Heavy metal to UHF
heavy metal

«Q Kokorev and Double-pipe, Mercury in tube, Stainless steel 65L/D UHF Local, average Nusselt numbers were calculated from a graphical integration of temperature
Ryapasov countercurrent water in annulus profile data. Results show satisfactory agreement with theory.
(1963)

L] Sawochkaand  Double-pipe, Potassium in tube,  Stainless steel ~ 58L/D Uncertain Local, fully Heat transfer coefficients were measured by inserting thermocouples at differ-
Schleef (1964) cocurrent sodium in annulus developed ent radial locations in the thick-walled tube. Data were lower than that predicted

by theory.

3 Merriam (1965)  Double-pipe, Hg in tube and Nickel Variable Local, fully Refer to detailed discussion.
Test Sec. 1 cocurrent annulus 20L/0 developed
Test Sec. 2 10L/D
Test Sec. 3 8L/D

L’} Awad (1965) Double-pipe, NaK in tube, steam Brass and 48L/D uwr Local, fully Local heat fluxes were calculated from radial temperature measurements in the

condenser in annulus constantan developed double-cladded copper tube and used to predict local Nusselt numbers. Fully
and copper developed Nusselt numbers were calculated from detailed fluid temperature

measurements at a station 44 L/D from the entrance of the tube. The data
show good agreement with theory.
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developed portion of the thermal field. The fully developed overall Nusselt
number was proportional to the slope of this linear portion of the curve. The
method also revealed over what portion of the heat exchanger the heat trans-
fer was fully developed. Heat transfer coefficients in individual channels
were measured by inserting a single thermocouple at the inner wall at a
specified radial location at the exit end of the heat exchanger. By use of the
heat flux calculated from the overall coefficient, the inside-wall tempera-
tures could then be computed. Bulk-fluid measurements were made at the
exit of the test section, and used with the heat flux and inside-wall tempera-
tures to calculate the fully developed heat transfer coefficients of individual
channels. Experimental values of heat-exchanger efficiency were calculated
from the mercury flowrates and inlet and outlet bulk temperatures,

Inaccuracies in the data were due mainly to extraneous heat transfer
through the nickel end plates of the heat exchanger. This end-conduction
effect was so pronounced in the lO-L/D test section that all the data taken
were discarded. The end plates of the ZO-L/D test section were then modi-
fied to reduce the conduction effect. The data taken from the ZO—L/D test
section were considerably better than those from the lO-L/D section. The
8-L/D test section was constructed with stainless steel end plates, and the
end-conduction effect virtually disappeared.

Merriam compared his experimental results with his exact analytical
solution and with solutions using the traditional method. Although there was
some scatter in the data, clearly defined trends could be discerned which
supported the contention that the traditional method can lead to inaccuracies
when applied to liquid metals.

D. Thermal-contact Resistance

Early experimental investigations of heat transfer to liquid metals
yielded consistently lower results than predicted by theory. Attempts to
explain this phenomena led experimenters to conclude that there existed a
thermal-contact resistance between the heat-transfer surface and the liquid
metal. Four separate explanations were offered to explain the existence of
this contact resistance.

1. The thermal-contact resistance was due to a lack of wetting of
the heat-transfer surface by the liquid metal.

2. An oxide or gas layer on the heat transfer surface increased
the resistance to heat flux.

3. The presence of entrained gas in the liquid metal itself caused
a reduction in the thermal conductivity of the liquid metal.

4, Local detachments of the flowing liquid metal from the heat
transfer surface caused a reduction in heat transfer.
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The most universally accepted explanation for the contact resistance
is the first, namely, the "wetting" theory. Authors who reported a difference
in heat transfer rates between a wetted and an unwetted system are Doody
and Younger,” Untermeyer,46 and Seban.?® However, Trefethen®* and
Lubarsky®® reported no difference in heat transfer between a wetted and an
unwetted system. The above conflicting viewpoints may be reconciled by a
consideration of the second explanation, the "surface film" theory. English
and Barrett?? believed that the use of additives to heat-transfer fluids in
order to promote wetting actually caused a breakdown of oxides on the test-
section walls. Also, the only essential difference between wetted and un-
wetted systems is that in unwetted systems a surface "dirt" film could
impede heat transfer, whereas in a wetted system the heat transfer surface
is being continually washed and cleaned by the flowing fluid. If care is taken
to keep impurities out of a heat transfer system, then whether a system is
wetted or not should have no effect on the heat transfer. Further support
for this theory may be found by noting that in experiments which reported
differences between wetted and unwetted systems, no precautions were taken
to keep the system clean, whereas for experiments in which these precau-
tions were taken, no difference was found.

The third explanation, the gas entrainment theory, was advanced by
MacDonald and Quittenton® in a review of the effect of wetting in heat trans-
fer experiments with liquid metals. They suggested that heat transfer in
liquid metal systems could be impeded by the presence of gas entrained in
the liquid metal itself. The authors stated that the gas would have to be in
the shape of elongated or "flat" bubbles in order to have a noticeable effect
on heat transfer. Calculations were presented which showed that the pres-
ence of 0.1% of gas by volume in the liquid metal could reduce heat transfer
coefficients by as much as 40%.

The fourth explanation, "local detachment theory,” was advanced by
Stromquist® after he observed small transient cavities between a flowing
liquid metal and a glass tube. The cavities were seen in both wetting and
nonwetting systems. The conclusion was that the cavities were random
detachments of the liquid metal from the tube wall. Stromquist rejected the
idea that the cavities were actually pockets of gas adhering to the test-
section wall.

Chelmer®® observed local cavities similar to those of Stromgquist,
but concluded that they were actually bubbles of gas entrained in the system.
He concluded that gas entrainment can seriously affect the performance of a
liquid-metal heat transfer system due to the adverse effect on the thermal
conductivity of the liquid metal.

An experimental analysis of the thermal contact resisstlance between
stationary mercury and steel was made by Bonilla and Wang. : It was re-
ported that wetting did not significantly change the contact resistance,
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Mizushina et a_i.,sz investigated the thermal-contact resistance be-
tween stationary mercury and nickel, copper, and chromium-plated copper
surfaces. A slight thermal resistance between the nickel and chromium-
plated surfaces and mercury was noted. No contact resistance was noted
with copper.

The preceding investigations suggest that the prime factor governing
the existence of a thermal-contact resistance is the cleanliness of the heat
transfer system. Wetting alone does not seem to have an effect on heat
transfer. Wetting systems, however, are to be preferred to nonwetting sys-
tems due to their self-cleaning feature. The heat transfer fluid must be
isolated from gas sources in order to reduce sources of error due to gas
entrainment. The local detachment theory probably is incorrect. Cavitation
in a smooth channel at the moderate velocities occurring in liquid metal heat
exchangers is improbable. The "local detachments" observed by Stromgquist
were probably gas bubbles as observed by Chelmer.

E. Special Topics in the Use of Mercury in Heat Transfer Systems

1. Wetting of Materials by Mercury

It is generally accepted that pure mercury will not wet steel
surfaces, wets nickel slightly, and readily wets copper. The addition of
small amounts of sodium, magnesium, or titanium to mercury will promote
wetting even on steel surfaces. Most of the experiments listed in Table 2.2
used mercury with steel or nickel heat exchangers. Mercury and copper
have been used in heat transfer experiments in Refs. 34, 53, and 54. In all of
the experiments with mercury and copper, wetting was easily obtained.

2. Corrosion of Materials by Mercury

The Liquid Metals Handbook®® lists mercury as mildly corrosive
to ferrous metals in dynamic systems and highly corrosive to nonferrous
metals in both static and dynamic systems. Experiments with mercury in
contact with stainless or low carbon steel (see Refs. 37, 38, and 40) report
little or no effect due to corrosion of the heat transfer surfaces by the mer-
cury. Experiments with mercury and copper (see Refs. 34, 53, and 54) indi-
cate that, for short-term use, mercury does not attack copper enough to
cause an error in heat transfer results. Mercury amalgamates the copper
surface, and, in dynamic systems, the amalgam is washed off. In long-term
use, the continual amalgamation and washing of the mercury surface could
cause serious eroding of the heat transfer surface.
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CHAPTER III

MATHEMATICAL ANALYSIS

The analysis to be presented follows that of Stein'’. Stein's analysis
considered both cocurrent and countercurrent flow, various symmetrical-
duct geometries, and was generalized to include both laminar and turbulent
flow. Initially, Stein attempted to use the Nunge-Gill procedure'? to calcu-
late the expansion coefficients for the countercurrent case, but was un-
successful. A more successful alternative procedure, discovered by the
author, was used for computations. Application of Stein's analysis was
somewhat limited since only a few numerical results for a narrow,
annular-space heat exchanger were presented. The present analysis con-
siders both narrow and nonnarrow annular-space heat exchangers in detail.

A. General Case
1. Model
The system to be analyzed is a counter-flow double-pipe heat
exchanger consisting of tube and concentric annulus. The heat-exchanger
fluids enter at opposite ends of the heat exchanger and flow parallel to one

another, transferring heat through the separating tube wall. The model for
the heat exchanger is illustrated in Fig. 3.1.
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Fig. 3.1, Heat-exchanger Configuration
2. Assumptions

The assumptions upon which the analysis is based are as
follows:

1) The fluids enter the heat exchanger at uniform temperature.

2) Physical properties are independent of temperature.

3) Frictional heating is negligible.



4) Axial heat conduction within the heat-exchanger walls is
negligible.

5) Axial heat conduction within the heat-exchanger fluids is
negligible.

6) The velocity distribution of the fluids is independent of
axial position (i.e., fully developed) and is a known function of the radial
coordinate.

7) The heat exchanger is in steady-state operation.

The first four assumptions are nearly always attainable in
actual physical systems. The fifth assumption is nearly always valid for
turbulent flow of nonmetallic fluids and is usually considered valid for
turbulent flow of liquid metals when the Peclet number is larger than 100.
Assumption six may be attained by including flow-development sections
for the heat-exchanger fluids prior to their entering the heat exchanger.
The velocity profiles may be expressed by an appropriate relation, such
as the well-known parabolic distribution for laminar flow or an empirical
relation for turbulent flow.

3. Governing Equations

Based on the above model and assumptions, the equation of
energy conservation for the heat-exchanger fluids is

Tube:
JT. (r., L) *3T (r,,£)
1 o €H 1\1 s, s e
;a—rl[(‘* = )“'a_] = gy wln) —57— e
Annulus:
OT,(r,, L) OT,(r;,4)
13 s P i) (R SR ——
Tz‘a'r:[(” S ] e A ORI

The above equations are valid for both laminar and turbulent
flow, and have the following boundary conditions.

Entrance:
T,(r;,0) = T}y (constant); (3.1c)
T,(r;,L) = T,1, (constant); (3.1d)
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Interior:
Tube centerline:

M =al)s (313)
3,

Continuity of heat flux across inner wall:

QT (1) oT 4
S T S L (3.1f)
or, or,

Simple conduction of heat across inner wall:

OTy(r12:8) _ k‘rv [Ti(r12,£) - Ta(rz1.8)]; (3.1g)
arl In (_ﬁ)
Ti2

-T2k

Insulated outer wall:

OT,(r22,4) E4D
R (3.1h)

4. Dimensionless Formulation

The governing equations may be transformed into dimensionless
form by introducing the following dimensionless variables:

=y A 7= s e (3.2a)

x; = ﬁ Ora il (3.2b)

o 54;—1 Ziz' O=sg =Z; (3:2¢)

€;(x;,2) =ﬂ(ri’“—'Tl°, 0 =¢; =1, eNlie. (3.24)
5P B LT

In terms of these dimensionless variables, the governing equations
become:

Tube:

L .2 [f,(xnx, M] = gilx) ie'aﬁ—’ (3.3a)



Annulus:

X X5,2 X5,2Z
s c%z[uxzxxﬁo) ____aeza(x: ’] - b ) (o
The boundary conditions become:
Entrance:
£1(x;,0) = 0; (3.3¢)
1(x2,2) = 1 (3.3d)
Interior:
0€,(0,2) g
ax1 - 0' (336)
ael(lﬂz) - aﬁz(olz)
* 0%, ox; (3.3f)
0t,(1,z
Ky 2902 4 60.0) = 63000 (3.3g)
5&2(1:2) =0, (3.3}1)
sz
where
fi(xi) = Lt %' (3:4)
(x4
gilx;) = :‘ =), (3.5)
AV
HKR
e T+ R’ (3.6)
0= f‘R. (3.7)

The solution of Egs. (3.3a) and (3.3b) is a function of five basic
dimensionless parameters: H, K, Ky R, and Z. Also required are the
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functions f;(x;) and gj(x;), where gi(x;) is determined by the duct Reynolds
number, and fi(xj) is determined by both Prandtl and Reynolds numbers.
The values of these parameters for a specific heat exchanger determine
what will be called "the operating conditions of the heat exchanger."

In terms of physical quantities, the parameters are

H = Csz/Clwl - heat capacity-flowrate ratio;
=0 Lk - relative thermal resistance of fluid;
an B
= —k-l- In Za1 - relative thermal resistance of wall;
Kw ey T2
R = rZI/rZZ - annular radius ratio;
z = W - dimensionless axial length;
Pe, 2r),
rrs
et -ali - "total" conductivity relative to molecular

i conductivity;

Bilot) = ui(xi)/uiAV - dimensionless local velocity.

5. Solution of Governing Equations

Separation of variables, applied to Eqs. 3.3a) and (3.3b), leads
to a solution involving a special case of the classical Sturm-Liouville prob-
lem. In this special case an infinite number of negative as well as positive
eigenvalues exist and must be included in the solution. The existence of
the negative eigenvalues arises from the fact that the velocity changes sign
at the inner wall of the heat exchanger. Details of the analysis are given
in Appendix A. It must be pointed out that the solution given here is not
directly applicable to the case for which the heat capacity-flowrate ratio,
H, is unity. When H = 1, an indeterminate mathematical form appears in
some of the terms of the solution and must be dealt with in another manner.
Stein?® has very recently presented a solution for the case of H = 1, in
which he takes the limit of the indeterminate terms as H =1 from both
above and below unity. A more detailed discussion of Ref. 28 was included
in the literature survey. The case H = 1 is not considered in this thesis.

a. Temperature Distributions

The solution for the temperature distribution of the heat-
exchanger fluids may be written in the form



& 3 -p%(z-z) =
€1(x;,2) = Cp + Z [AnEl,n(xl) = Z + CnEl’n(x,) e n] . (3.8a)

- W -ﬁ;(Z-z) -X;z
€5(x;,2) = Co + z ApE; n(x;) e + CnEz'n(xz) e b (3.8b)
n=1
where
)‘:1 - nth positive eigenvalue;
}j; - absolute value of nth negative eigenvalue;
E; n(x,} - normalized eigenfunction in stream i associated

with nth positive eigenvalue;

ﬁi,n(xi) - normalized eigenfunction in stream i associated
with nth negative eigenvalue;

Cn - expansion coefficient associated with nth
positive eigenvalue;

An - expansion coefficient associated with nth
negative eigenvalue.

b. Eigenvalue Equation °

The eigenvalues X; and B; are the squares of the positive
roots of the equations

Y(\) = 0; (3.9a)
¥(B) = 0, (3.9b)
where
(N = Ky dcéi;)\) dFé,lc;)\) E de(:z,x) F(1,A) - Kd_Fc(ii_'l“ G(0,}) (3.10a)
and
206 = Ky dG(0,8) dF(1,8) , dG(0.8) 2. - de‘(l,ﬁ) 0.8 5 vn)

dx, dx, dx, dx,
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The above functions, F, F, G, and G, are defined by Egs. (3.13) to (3.16):

c. The Eigenfunctions

The normalized eigenfunctions Ei,n(xi) and Ei,n(xi) are

given by the following equations:

468020} ppe, Am)
dx, - (3.11a)

V| Ngl

dG(0,Bn)

El,n(xl)

f‘(xl,ﬁn)

~ de
E;n(x) = : (3.11B)

VN,

dr(1,y)
K Tc(xz,xn)

Ez,n(xz) - ’ (3.11c)
!N

n|

KdF_(l’ﬁ_“_) G(x2,Pn)
~ dx,; )

E; n(x); = - (3.114)

' NN

2 2
= [__dG(O,Xn):I Bl{[F(xl:Xn)]z}- HKZI:SE'(E:I_)\TL)] Bz{[G(xz'A‘n)]z}; (3.12a)

dx,

2

= ~ 2
i [_dG(O'ﬁﬂ] B {[F oy B)} - HKZ[_“F‘;'W] B, {[Gxe.Bn)]'}:
X1

dx,

0= 1,23, wvaarany

where the notation Bi{ }, indicates a "mixing cup" or bulk average as de-
fined by Eqs. (3.22a) and (3.22b) in Section 6.a.

The functions F, 1-:, G, and 6 are the solutions of the
following initial-value problems:

d_’d‘l[fl(xl) 3} dF(x“X)] +A%xg, (%)) Flxp,A) = 03 (3.13a)

i



aF(0,)) . rE
o ~umahelld B(02) = 1z
dxiz[fz(xz)(xZ'Fc) d_G((::z_')‘)] RN b e, 40) Gl )) = 95
M = 0; G(l,)\,) = 1:

dx,

H(:Tl[fl(xl) x) dF(xl’ﬁ)] - B*x1g1(x;) f‘(xlrﬁ) = 0;

dxl
dF(0,8) _ ~ Eae
=0 F(0.p) = 1
4 [ xp)oxp + 0) SCE2B] 4 2020, () o+ 0) Gl B) = O
ax, 2\ X )\ X, ax, g2\Xz2) Xz X2, B '
S8 a0 s
ey 05 G{l,B) = 1.

d. Expansion Coefficients

(3.13b)

(3.14a)

(3.14b)

(3.15a)

(3.15b)

(3.16a)

(3.16b)

The expansion coefficients A, and C; are defined by the

following infinite set of linear algebraic equatigns:

© . 3 -Bf(Z
z B, {E; n(x1) Ex,k(xx)} (1 .8 )Ak
k=1

2

o “ALZ -
- B {E, n(x1) Ey,k(x))} (l-e . )Ck] = B {E; n(x1)}:

) 5 -ﬁzZ
z [’Bl{El,n(xx) El,k(xl)} (l - K ) Ay
k=1

A2z
+ B, {E, n(x) El,k(xl)} (l -e K ) Ck:l = -BI{E,,n(xl)},

with

n e 1283 ...,

(3.17a)

(3.17b)
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and for the zeroth-order coefficient:

et -BiZ
Co = ~ Z Bl{El,k<xl)} <1-e A
L=
ARl
N =
5 Bl{El,k(xl)} (1 =e >Ck "N (3.18)
where
NO =1 - H. (319)

The solution of the above system of algebraic equations is
accomplished by truncating the higher-ordered terms and equations, and
then solving the remaining finite set of equations. Nunge and Gill'??° ysed
a similar set of equations to compute expansion coefficients for a laminar-
flow heat exchanger. The difference between their procedure and the pres-
ent one is in the form of ‘the infinite set of equations. The present
formulation yields a set of equations whose coefficient matrix has off-
diagonal elements which approach zero as the order is increased, and
diagonal elements which approach unity as the order is increased. In the
coefficient matrix of the Nunge-Gill set of equations, all of the elements
approach infinity as the order is increased. Because of the magnitude of
the coefficients in the Nunge-Gill formulation, the set of equations is ill-
conditioned for computation, since it is necessary to do computations with
numbers which become unmanageably large. The present procedure, on
the other hand, results in a set of equations which is well-conditioned for
computations, since the computations are performed with matrix elements
whose magnitudes do not vary significantly. The computational procedure
used to calculate the expansion coefficients will be discussed in a later
section.

6. Definitions

a. Bulk or "Mixing-cup" Averages

The bulk or mixing-cup average of quantity, indicated by
the bulk average operator B;{ }, is defined as:

Tube:

T2
j; ul(rl){ }rldrl
Bi{}= ; (3.20)

T2
; uy(ry)ry dr,
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Annulus:

f"zz
- uz(rz){ }l'z dr,

T22
u,(ry)r, dr,

T21

Expressed in the dimensionless form, the above expressions become:

Tube:
1
B,i}= Zf g1(x){ }x; ax,; (3.22a)
0
Annulus:
2 1
B} = m./o‘ g2(x){ }(x; + 0) dx,. (3.22b)

Application of the bulk average operator to a temperature
distribution results in the bulk temperature, indicated by an overscore:

B {€; (xi.z)} = E;(2).

b. General Heat Balance

L
A heat balance applied to the heat exchanger at any point
along its length yields the following bulk-temperature relationship:

Ey(z) = H[E,(2) -E,(0)]; (3.23)
at z = Z,
£1(z) = H[1- E,(0)]. (3.24)

By expressing the bulk temperatures in terms of the series
solution, Eqs. (3.8a) and (3.8b), and applying the orthogonality condition (see
Appendix A), the following may be derived:

Ei(z) - HE,(z) = (1-H) Co. (3.25)

At the ends of the heat exchanger, the above equation
becomes

E(z) = (1-H) Co + H; (3.26)
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E,0) = 2 ;{1 /%, (3.27)

c. Heat-exchanger Efficiency

The efficiency of a counter-flow heat exchanger is defined
as the ratio of actual heat transferred to that which,would be transferred

if the heat exchanger were infinitely long:

actual heat transferred = c,W,[T)o- T, (L)]

Czwzﬁ:z(o) " TzL];

heat transferred for

infinite length (ciWi)min[T10 - T2L]-

The ratio of the preceding quantities yields

H < .1

£ = *I({Z) = $u B, (3.28a)
H> 1

€ = £(2) = H[1-£,(0)], (3.28b)

or, using Eqs. (3.26) and 3.27),

H< 1
de i H
€ = IE Co + 1; (3.293)
> ol
€ = (1-H)Cy +H. (5,293
As Z +- o, €=+ 1, so, from Eqs. (3.28a), (3.28b), (3.29a),
and (3.29b), gs- ( ) ( ), (3.29a)
H<1

Z »w: £,(2) = H; £,(0) = 0; C, =+ 0; (3.30a)



Ha=»l

Z -m: E,(2)=1; £,(0) - 8y 1. (3.30b)

The series expansion for the end bulk temperatures may
be written:

o0

- - N2
£1(2) = Co + Z [AnBl{E,,n(xl)} + CpB{E, [ (x,)} e X“Zjl (3.31a)

n=i

and

— o -~ - 2
€2(0) = Co + Z[AnBz{Ez,n(xz)}e PnZ | CnBz{Ez'n(xz)}]. (3.31b)

n=)

Letting Z - « and applying Eq. (3.30a) to Eq. (3.31b) and
Eq. (3.30b) to Eq. (3.31a) gives

H<K1:
00
Z - z CnB,{E, 5(x,)} - 0; (3.32a)
n=1
B> 1
»
= ~
Z = ) AnB{E, n(x)}~0. (3.32b)
n=1

These equations reveal little about the individual behavior
of the coefficients Ay and C, as Z - ». However, computations have re-
vealed that the terms in each of the above summations are identical in sign
for all values of n; therefore, since the summations approach zero as
Z =+ >,

5 S

Cn—=0as Z = (3.32¢)

Ay—=>0 ag 2.+ (3.324)
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d. Heat Transfer Coefficients

(1) Local Coefficients

Local heat transfer coefficients, based on wall to bulk

fluid temperature differences, may be defined as follows:

Tube:
a(e)
L) s —/——— :
hlg) Ti(£) - Ty(r1z.4)° 3.59
Annulus:
hy(8) = %(f) (3.33b)

Ta(rz1.8) - Tz(l).

In dimensionless form the above equations may be

expressed as Nusselt numbers:

Tube:
_Zagl(lvz)
st LT e 3.34
e - e -
Annulus:
agz(orz)
)
Nu,(z) = - (3.34p)

above equations.

Tube:
_dE(2)
pted e -d&zlu.z) @.3%)
-HKM
Nuy(z) = ——<22__ (3.35b)

E—!Z(Ovz) ' gz(z)
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An overall or "combined" heat transfer coefficient,
based on tube properties, may also be defined:

Overall:

g . M— 3.36
T (2) - T,(2) ( )

In dimensionless form, the above equation becomes
bai 551(1 'z)

o,
£)(2) - E;(2)

Nuf(z) (3.37)

or alternatively,

dEl(Z)

Nu$(z) = dz . (3.38)

Ei(z) - E;(2)

The tube, annulus, and overall Nusselt numbers are
related by the familiar additive resistance relationship:

1 1 Ky K

Nus(z) - Nog(z) T 2 T Nug(=)' (3.39)

(2) Fully Developed Coefficiehts

For long heat exchangers, Eqgs. (3.32c) and (3.32d) may
be substituted into the series expansion for the temperature distribution of
the heat exchanger fluids:

B 1
- - -B(z-z)
€1(x;,2) = Cp + z AnE; n(x) e P - (3.40a)
n=j
— ¥ -p4(z-2)
€,(x;,2) = Co + z ALE; n(x;) e : (3.40b)

n=1
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B S
e —)\;z
€1(x,Z) =Gy + Z CnE; n(x) e ; (3.40¢)
n=1
= I
Emuim) But ) Callpala)e 2. (3.404)

n=1

The fully developed region of heat transfer is defined
as that portion of the heat exchanger where the heat transfer coefficient is
independent of axial position. For this fully developed region, only the first
term of the above series is needed to calculate the temperature distribu-
tion, since the higher-order exponential terms become negligible small.
Depending on the operating conditions of the heat exchanger, the fully de-
veloped region may occur only in the middle or may extend to either end
of the heat exchanger. For small Z, of course, a fully developed region
may not exist at all.

For the fully developed region,

B ]
~ -R%(7 -
Ei(x1,2) ® Cp + AJE) )(x)) e Ailz Z); (3.41a)
= _R2(7.-
€2(x2,2) = Co + AE,; 1(x;) e Filz z); (3.41b)
EX. s 1
2
€1(x1,2) = Cy + C\E;, (x;) e_)\lz: (3.41c)
-Az

€2(x2,2) = Co + C1E; 1(x;) e (3.41q)

Using Eqs. (3.41a) to (3.41d) in Eqs. (3.35) and (3.38)
yields expressions for the fully developed Nusselt numbers.

7 I
. H
Nalyp = =581 (3.42a)
B, {E .
Nupp = = 1By, 64)} Bd; (3.42b)

E;, (1) - Bl{ﬁl,l(xl)}



HKB,{E,; ;(x;)}

Nu,pp = B2 (B 10)} - B24(0) BE: (3.42¢)
B>1
NuSFp = ﬁxi. (3.43a)
Bi{E, 1 (x
Nu;pp = Bl{Ell,l{(xi;l}('l)E}l,l(l)Xi; (3.43b)
Nu,Fp = HKB, (B, ()} af: (3.43¢)

E; 1(0) - B{E; i(x;)}

(3) Average Overall Coefficient

The "length average" overall Nusselt number is given
by the relation:

z
Nujay(2) = -lz—f Nu$(z) dz. (3.44)
0

Equations (3.38) and (3.23) may be substituted into the
above expression and the result integrated to give

H H(1 - §,(2))
Nujav(Z) = In - (3.45)
s I-H 2z [B-£,(2)]
e. Effectiveness Coefficient
Equation (3.45) may be rearranged to give
-ENu‘l’Av(Z) z
= H|l - e H
£,(z) = (3.46)

H-1
-5 Nujav(z) z

H-e

Substitution of Eqs. (3.28a) and (3.28b) into the above yields
the following relations for heat-exchanger efficiency:

41



42

Hic, 1
-l;HIiNuTAV(Z) z
o e ; (3.47a)
-SF Nujav(2)Z
1 - He
HD> 1
A Nujav(Z) Z
Hll - e H
-2 Nujav(2) 2

H-e

The above expression is equivalent to that given by Kays
and London.%®

Equations (3.47a) and (3.47b) may be used to calculate
heat-exchanger efficiencies if Nujay(Z) is known as a function of heat-
exchanger length. In practical design computations, however, the assump-
tion is often made that Nujpy(Z) ® NujFp, and NujFp is used in
Egs. (3.47a) and (3.47b) to calculate efticiencies. This assumption greatly
simplifies the computations since NujFp is independent of heat-exchanger
length, whereas Nujay(Z) is not. The assumption is subject to inaccu-
racies, particularly for short heat exchangers, since the fully developed
coefficient does not account for the high heat fluxes occurring in the
thermal-entrance regions of the heat exchanger.

A quantity called the "effectiveness coefficient," ¢(Z), may
be defined to account for the thermal-entrance region separately from the
fully developed region:

HE<: 1
I'H o o
'T[NulAV(Z)'NulFD] z
?(z) = e : (3.48a)
H> 1
H-1 o )
'T[NulAV(Z)‘NulFD] Z
#(z) = e ‘s (3.48b)

0 < ¢(z) < 1.
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Substitution of the above equations into Eqs. (3.47a) and
(3.47b) yields the following expressions for :

H < 1:
1-H °
: ( ) —TNulFDZ
- ¢(Z
€ $\Z) e e (3.49a)
-T NulFDZ
1 - Hp(Z) e
H>1
[ -—I;l NuTFDZ]
H|l - ¢(2
; ¢( )eHl (3.49b)
'—I; NUTFDZ
H-¢(z)e

The effectiveness coefficient must be calculated from known
values of € and Nujpp. For sufficiently large Z, computations indicate
that ¢(Z) reaches an asymptotic or fully developed value ¢pp.

1. Number of Transfer Units

The quantity Nujayv(Z) Z appears so often in the equations
for heat-exchanger design that it has been given a name, "number of trans-
fer units," and is designated by the symbol NTU. A discussion of the use-
fulness of NTU may be found in Ref. 56.

NTU is defined:

NTU = ZNujav(z)/H; (3.50a)

NTU

ZNu:Av . (3.50b)

For the fully developed region, a fully developed NTU may
be defined, based on Nujpp, as follows:

B < 1;

NTUpp = ZNujFD/H; -S4
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NTUpp = ZNujFD. (3.51b)

For long heat exchangers, NTU = NTUFD-

Short heat exchangers or heat exchangers with low heat
transfer coefficients are characterized by small values of NTU, whereas
long heat exchangers or heat exchangers with high heat transfer coeffi-
cients have large values of NTU. NTU therefore represents the "heat
transfer size" of a heat exchanger.

B. Approximation for Turbulent Flow

The solution of Eqgs. (3.13a) to (3.16a) for the functions F and G,
necessary to compute the eigenfunctions, requires a knowledge of the
functions gi(xi) and f;(x;). For turbulent flow, gi(xi) and fj(x;) must be
computed from empirical relationships. An additional complication arises
in the computation of fi(xj), since a relationship between the eddy diffu-
sivity of heat, €p;, and that of momentum, €)f;, must usually be inferred

from the analogy between heat and momentum transfer.

Once the functions gj(x;j) and fj(x;) are determined, Eqs. (3.13a)
to (3.16a) may be integrated numerically. For the simple case of a uniform
velocity profile (plug flow), where gj(xj) = fij(xj) = 1, it is not necessary to
resort to numerical techniques, however. A relatively simple expression
in terms of known functions is obtained for F and G.

Generally speaking, heat transfer analyses made with a plug-flow
model give results which are inaccurate in describing the physical phenom-
ena for nonmetallic fluids and yield physically meaningful results for liquid
metals only in the low Peclet number range (Pe < 50). This is due to the
fact that, for liquid metals in the low Peclet number range, eddy conduction
plays a minor role compared to molecular conduction in the transfer of
heat and fj(xij) = 1. For liquid metals, steep temperature gradients are
not localized near the duct wall so that the error resulting from using a
uniform velocity, gj(xj) = 1, in this region is not significant. An approxi-
mation, introduced by Stein,?? which extends the accuracy of the plug-flow
model for liquid metals up to a Peclet number of 1000 will now be
introduced.

il e Approximation

The following derivation follows the work presented in Refs. 16,
22, and 23.



a. Derivation

New radial variables, xt(xi), will now be introduced such

that
Tube:

s, G

kt x) f1() % ° e
Annulus:

+
1
! S o (3.52b)

.l:f (xt+0) T (%) (xp+0)’

+
where xi(O) = 0 and the constants kT and k: are defined such that
xt(1) = 1.

A new dimensionless axial variable, z%(z), may also be

defined:
zt = kiz. (3.53)
Equations (3.3a) and (3.3b) in terms of the new space
variables xt and zt are: .
i
Tube:
+ + + +
1 3 + aﬁl(xl.z ) S a&n(xl’z )
——|x — | =eitx)) ————: (3.54a)
x; Ox, 1 oz
Annulus:
+ + - + o+
1 3 + O, (x2,2") 2 ki 4+, + OE,(xz,2)
5 SR (xz+0)—+ =S —+gz(xz)—+.-
(x,+0) ox; ox, k, z

(3.54b)
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The boundary conditions become:

Entrance:
61(x+1,0) = 0; (3.54c¢)
éz(xJZ,ZJr) = 1. (3.54d)
Interior:
3,(0,2%) _ o, (3.54e)
ax-:
W K3z 36021, (3.541)
k: 5x-;’ ax:
Ty
. t_ag,(_:_) +€,(1,2%) = £,0,2%); (3.54¢)
X 1
1 5
el 0, (3.54h)
oxt
where
+,_t 1. ey
gilxy) = gl(xl)_+_+ (3.55a)
x) dx,
and
it x, + 0\ dx;
g2(x3) = gﬂxl)(xf{m)j' (3.55b)

For turbulent flows of liquid metals with small Peclet
numbers, the above functions are approximately equal to unity over a large
portion of the cross section of the heat-exchanger duct, whereas for all
Peclet numbers, their average value over the cross section of the duct is

unity. That gt(xT)Av = g:(xt)AV = 1 is evident from an integration of
Eqgs. (3.55a) and (3.55b).



As an approximation, it will be assumed that g ,(x,) and

g z(x z) are identically equal to unity for all values of the Peclet number.
Equations (3.54a) and (3.54b) then reduce to the following:

Tube:
RN I NI ) NS 3.56
Sy 4 et T o (356}
X axl axl oz
Annulus:
13 [, o) 2abdaD] M bzt ks
2 - » ——, .
xt +0 ax-; axt k: ozt

with the boundary conditions remaining unchanged.

Equations (3.56a) and (3.56b) are identical in form to those
which would be obtained by applying a plug-flow model, g;(x;) = fi(x;) = 1,
to Eqs. (3.3a) to (3.3h) and making the following changes in the parameters
K and Ky and in the axial length z:

+ ‘
k k:k: 1R
K'*—% s _'1.1 — {(3:57)
k, k ok,
+
+ k 1k, (1'21)
-k, Ky = —— LIn|(—); . (3.58
Kw it 0 T2 )
+ 4 )
z +k,z = k, Po: (3.59)

The actual effect of the k¥ approximation, then, is to re-
place the molecular conductivity, k;, by what may be termed an effective

conductivity, kxkx' in the plug-flow equations.

The solution of Eqs. (3.56a) and (3.56b) yields the turbulent
temperature distribution of the heat-exchanger fluids as functions of x)lr
and z¥. Since xl(O) 0 and xl(l) = 1, the fluid wall and bulk temperatures
are unchanged by the transformation:

Ei(z) = Ei(z*): (3.60)
€i(l,2) = £,(1,2%); (3.61)

Ez(o,z)

€,(0,2%). (3.62)
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ot : + i
The heat-exchanger efficiency in terms of x; and Z is

(3:63a)

ER=NE (Z2). (3.63b)

: + +
The Nusselt numbers as functions of x; and z may be

written in the following forms:

Tube:

Nul(Z) = El(z) = g](l,z)

e i g 1L (3.64)

Annulus:

L R ST el e Sy (3.65)

Overall:

N\l‘;(z) = ?kl . (3.66)

Ei(z?) - Ex(21)

The heat-exchanger efficiency and Nusselt numbers for
turbulent flow are related to the plug-flow values as follows:
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Efficiency:

€ = €Epp; (3.67)
Tube:

Nu,(z) =[kT N“‘(Z)]PF‘ (3.68)
Annulus:

Nu,(z) =[k: Nuz(z)]PF; (3.69)
Overall:

Nui(z) = kT[Nu?(Z)]PF, (3.70)

where the plug-flow values are calculated from Egs. (3.3a) and (3.3b) with
the conductivity k; replaced by its effective value 'kikt'

b. Computation of k.'i'

An expression for the quantity k': may be obtained by
integrating Eqgs. (3.52a) and (3.52b) over the cross section of the duct:

; dx.*l.(xl)
xt(xl)
T ek e ot (3.71)

k +
dx,(x;)

_Satn)
+ O
b Xkl to (3.72)

1
f_li
| Tl Gato)

Solution of the above equations for k: requires a knowledge
of the eddy diffusivity of heat, €Hi(xi)’ as a function of radial location. As
mentioned previously, €Hi(xi) is usually obtained from experimental values
of the eddy diffusivity of momentum, eMi(xi)’ by assuming a relationship
between them. The usual assumption is that their ratio has a constant value.
An additional complication arises in the calculation of k+1 because the ex-
pression on the right of Eq. (3.71) is indeterminate at x; = 0.
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. +
In view of the difficulties encountered in calculating kj

from Eqs. (3.71) and (3.72), an alternative method, based on Eqgs. (3.68)
and (3.69), will now be presented.

From Eqs. (3.68) and (3.69),

Nuy(z) . (3.73)
[Nul(z)]pF

-+

_ Nuglz) (3.74)
[Nuz(z)]PF

Similar relations hold for NuiFD:

a2 (3.75)
[NulFD]PF'

NuFD
O E Sl el (3.76)
[NuZFD]PF

If, for a specified heat-flux boundary condition, values of
Nu; pp and [NuiFD]pF are known, the above relations can be used to

calculate k;. Since explicit relations for Nu;pp and [NuiFD]pF for the

boundary conditions of uniform wall heat flux and temperature are available
in the literature, kt may be calculated quite easily. The values obtained,
of course, are only as accurate as the particular relation used to calculate
Nu;pp and reflect any assumptions inherent in that analysis such as the as-
sumption about the relationship between €py; and €yy-

As mentioned in the literature survey, most of the research
in liquid metal heat transfer has been concentrated on finding reliable re-
lationships for heat transfer in individual pipes and annuli with specified
boundary conditions at the wall. By far the most extensively investigated
case was that of uniform wall heat flux. As a result, predictions of Nusselt
number for uniform heat flux are considered to be more accurate than
those for other boundary conditions and will be used for calculating k.

Figures 3.2 and 3.3 compare values of kt and k"z' calculated
from Nusselt number relations in Ref. 5, 9, and 10 for uniform heat flux in
tubes, and in Ref. 68, 11, and 12 for unifdrm heat flux in annuli. Although
the values of k': differ by as much as 25% for some ranges, experimental

investigations®?'*%",% have indicated that the predictions of Buleev® for
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tubes and of Dwyer® ® for annuli
are the most accurate. The Nusselt
number relations of Refs. 5 and
6-8, as well as corresponding plug-
flow values, are given in Table 2.1.
It will be the practice throughout
this thesis to calculate kt from
these relationships.

c. Accuracy of the kt
Approximation

Stein?? has investigated
the accuracy of the k* approxima-
tion by computing entrance-region
Nusselt numbers in a uniform-wall-
temperature parallel-plate channel

and comparing them with the turbulent-flow solution of Poppendiek.?? The
entrance-region computation represents a stringent test of the approxima-
tion since k't is used in computing Nusselt numbers which are functions of

axial distance. Figure 3.4 com-
pares the k' solution with that of
Poppendiek. Agreement between
the two solutions is quite good
everywhere but at the beginning of
the thermal-entrance region. Inthe
thermal-entrance region, tempera-
ture gradients are localized near
the duct wall, where the principal
mode of heat transfer is molecular
conduction and eddy conduction
plays a minor, if not insignificant,

role. Thus, specification of an ef-
fective conductivity, kkt, which
includes eddy-conduction  heat

transfer, results in anoverestima-
tion of the heat transfer coefficient.
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2. Plug-flow Solutions

The expression for the temperature distribution of the heat-
exchanger fluids is given by Eqs. (3.8a) and (3.8b), in which the terms are
defined in terms of the functions F(x;,1), F(x1:B), G(x;,1), and G(xz,B)-
These functions are given by the solution of Eqs. (3.13a) to (3.16a). For
a plug-flow model, the functions f;(x;) and gi(xi) are unity, and a solution

in terms of known functions is possible.

a. Nonnarrow Annular Space

The solutions of Eqs. (3.13a) to (3.16a) for a plug-flow

model are

F(x;,0) = Jo(Axy)s (3.77)
G(xz, 1) = oA(l +0){K,[wM1 +0)] L[wi(x; +0)]
5 + L[wA(1 +0)] Ko[wh(x, +0)]}; (3.78)
F(x, B) = L(pxi)s (3.79)
Gz, B) = ZwB(1+0) Iy [@A(1 +0)] Vo[ lx, +0)]

-y [wB(1 +0)] Jo[wB(x, +0)]}. (3.80)

Substitution of the above expressions into Eqs. (3.10) and
(3.11) yields the eigenfunctions and eigenvalues. The expansion coefficients
may then be calculated from Egs. (3.17) and (3.18).

b. Approximation for a Narrow Annular Space

If the heat exchanger to be considered has a narrow annu-
lar space, that is, R = 1, Eqs. (3.14a) and 3.16a) may be further simplified
by letting R = 1 and solving the resulting expression.

For R = 1,and 0 - », Eqgs. (3.14A) and (3.16a) reduce to
the following:
d’G(x,, )

o e WEA2G(x,,A) = 0; (3.81)

e
d G;i:-ﬁ) + w?B2 G(x,,B) = 0, . (3.82)
=

with the initial conditions remaining unchanged.
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Solutions of these equations are
G(x;,1) = cosh [wA(l - x,)] (3.83)
and

G(xz, B) = cos [wp(l-x;)], (3.84)

with F(x,;,\A) and F(x;,B) the same as for the nonnarrow annular space.

The approximation for the narrow annular space affords a
considerable simplification in the form of the expressions for G(x;,)) and
G(xz,£). In addition, the geometrical parameter R has been eliminated
from the equations and is only accounted for in the parameter K. The
narrow-annulus approximation is, of course, exact only for the physically
impossible case that R = 1, but it will be shown that for practical com-
putations, it can be used for values of R as low as 0.5.

C. Computation for Plug-flow Case

1. Eigenvalues and Eigenfunctions

Substitution of Eqs. (3.77) to (3.80), or (3.83) and (3.84), into
Egs. (3.10a) and (3.10b) yields the expressions for the eigenvalue equations
¥(A) and §(B). The eigenvalues 7\:'1 and B;. are the squares of the positive
roots of the equations

Y(A) =0 (3.9a)
and
@(ﬁ) = 0. (3.9b)

The roots of the above equations were found through use of a
simple half-interval iteration procedure. The eigenfunctions were then
easily calculated from Eqgs (3.1la) to (3.11d).

Polynomial approximations given by Ref. 60 were used to calcu-
late the Bessel functions appearing in Egs. (3.77) to (3.80). Since it was not
necessary to perform any long multiplications or additions in computing the
eigenvalues and eigenfunctions, round-off errors were probably at a mini-
mum. The main source of error, then, was the error in the polynomial
approximations used to calculate the Bessel functions. This error is given
in Ref. 60 to be of the order of 107® or smaller. The error in the eigenval-
ues and eigenfunctions is judged to be of the same order, namely, 1
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2. Expansion Coefficients

The expansion coefficients are defined by the infinite set of
linear algebraic equations, Egs. (3.17a) and (3.17b). Solution of this sys-
tem of equations for all values of n is, of course, impossible. In practical
computational work for moderately long heat exchangers, however, only a
few of the lower-ordered coefficients are needed to describe adequately
the temperature distribution of the heat-exchanger fluids.

Specifically, only one term is retained in the series solution
for the fully developed region of heat transfer, and only the zeroth-order
coefficient, Cy, is needed to compute the efficiency. For short heat ex-
changers and for computations in the thermal-entrance regions, the large
number of terms required in the solution could impose a serious restric-
tion on the applicability of the present method.

Equations (3.17a) and (3.17b) may be solved for the lower-
ordered coefficients by truncating the higher-ordered terms and equations,
and solving the remaining finite set. For computational purposes, the
summation in Egs. (3.17a) and (3.17b) was from 1 to M, where M was equal
to one-half the order of the resulting system of equations. This finite set
of equations constitutes an approximation to the infinite set and may be
solved for the coefficients C, and A, for n = 132,3, ..., M. The accuracy
of the coefficients calculated in this manner must be judged by inspection
of the values obtained for the coefficients as the number of equations is in-
creased. As M is increased, the coefficients should asymptotically
approach the value for "M = ©." Table 3.1 illustrates the convergence of
the coefficients as the number of equations retained in the solution is in-
creased. Note that the zeroth-order coefficient is not calculated directly
from the solution of the set of equations, but is calculated separately from
An and Cp by Eq. (3.18).

TABLE 3.1. Convergence of Expansion Coefficients for
Narrow Annular Space

H =05 K=05L K0 Z=01

No. of
Equations,
2M Cy Cs (o2t Ay A,
2 -0.21264 -0.07151 - 0.57158 -
4 -0.20540 -0.06768 0.04173 0.55710 -0.03821
6 -0.20308 -0.06669 0.04086 0.55164 -0.03496
8 -0.20195 -0.06624 0.04050 0.54880 -0.03283
10 -0.20128 -0.06599 0.04031 0.54712 -0.03130
20 -0.20010 -0.06556 0.04001 0.54405 -0.02748
40 -0.19967 -0.06541 0.03990 0.54290 -0.02542
60 =0.19957 -0.06538 0703988 0.54262 -0.02484
80 =0,19953 -0.06536 0.03987 0.54251 -0.02460
100 ~0,19950 -0.06535 0.03987 0.54245 -0.02448
120 -0.19950 -0.06535 0.03986 0.54242 -0.02441
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The number of equations necessary to produce the desired
convergence varied from case to case. In general, more equations were
necessary for small values than for large values of Z. In computing low
values of heat-exchanger efficiency, for which only C, was required, it
was necessary in some cases to use 60 equations to insure convergence in
the third decimal place. For computations in the thermal-entrance region,
120 equations were used.

When Eqs. (3.17a) and (3.17b) are arranged so that the
coefficients Ay and Cy are interlaced, and the unknowns are taken as

-ﬁz > _)\Z 7
(1 il - ) Ay and (l -e k ) Ck. then the coefficient matrix of the re-

sulting system of equations possesses the following properties:

1. symmetry;

2. as the order of the off-diagonal terms is increased, they
decrease in absolute value;

3. as the order of the diagonal terms is increased, they
approach a constant value of order unity.

Table 3.2 illustrates the behavior of the elements of the coefficient matrix.
Systems of equations whose coefficient matrix does not have terms which
vary widely in magnitude and whose determinant is not close to zero are
well-conditioned™ with respect to computation. As a result, round-off
errors, though always present, are not considered a major source of error.
For the computations performed in this thesis, even though as many as

120 equations were solved in some cases, the coefficients converged uni-
formly and did not display the erratic behaviorsto be expected if serious
round-off errors were present.

TABLE 3.2. Behavior of Coefficient Matrix Elements?
H=05 K=0.1; K, =0; Z=0.1; M= 60

Nonhomoge-
Column: 1 2 3 4 117 118 119 120 neous Part
Row:
1 3.1240 -7.329-1 -2.639-1 4.593-1 5941-3 -1.856-2 -5.841-3 1.825-2 1.102+0
2 1.350+0 1.294-1 -1.423-1 -2.303-3  6.987-3 2.264-3 -6.873-3 -3.336-1
3 1.12440 -1.169-1 -4.882-3 1.634-2 4801-3 -1.606-2 -1.426-1
4 1.094+0 1.838-3 -5.437-3 -1.806-3 5.350-3 2.100-1
117 1.002+40 -1.915-3 -2.451-3 1.920-3 2.924-3
118 1.002+0 1.878-3 -2.400-3 -9.043-3
119 1.002+0 -1.883-3 -2.874-3
120 1.002+0 8.893-3

3By an entry such as 5.941-3 we mean 5.941 x 1072,
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Equations (3.17a) and (3.17b) were solved by two independent
methods, Gauss elimination and Gauss-Seidel iteration. In the Gauss elimi-
nation scheme, the largest coefficient of the reduced matrix was used as
the "pivot" in order to reduce round-off errors. Further support for the
contention that large round-off errors were not present is the fact that use
of the largest coefficient as the pivot had virtually no effect on the result.
The Gauss-Seidel iteration scheme was used to check the results of the
Gauss elimination. For the 36 cases tested, the two methods yielded
identical results. All numerical results presented in this thesis were
computed by Gauss elimination.

3. Effectiveness Coefficient

Once the eigenvalues, eigenfunctions, and expansion coefficients
have been calculated, computation of Nusselt numbers and heat-exchanger
efficiency is straightforward and poses no problem. In computing the ef-
fectiveness coefficient ¢(Z) for large Z, however, the accuracy obtainable
is severely limited by the form of the expression for ¢(Z). For the compu-
tations, ¢(Z) must be computed from the following equations:

H< 1
e 27
#(2) = meﬁl ; (3.85a)
B>l
H(l- &
#(z) = g e (3 85b)

H-€

For large Z, and hence € close to unity, the preceding equa-
tions lead to inaccuracies in computing ¢(Z) because of a loss of signifi-
cant digits in computing the quantity (1 - €). For some cases, € must be
known accurately to several significant digits in order to calculate ¢(Z)
accurately. To investigate what effect the error in € has on the accuracy
of $(Z), Eqs. (3.85a) and (3.85b) may be written in finite difference form:

H< 1
Oy S iBetie e i
¢ (1-e)(1-€H) ¢ 3 8%
H>1
A¢~ (I'H)€ Ae (386b)

% (l-elH-€) €.



These equations reveal that as € approaches unity, the percent of error in
¢(Z) becomes much larger than the percent of error in €. For € = 0.9,
the percent error in ¢ is an order of magnitude larger than that in €.

Since extensive computations for high efficiencies are necessary
in order to establish the fact that ¢(Z) reaches a fully developed value, the
limitation on accuracy is a serious one for the prediction of $FD-

Figure 3.5 illustrates the behavior of ¢(Z) as € = 1. As the
number of equations retained in the computation of the expansion coeffi-
cients is increased, $(Z) seems to be asymptotically approaching a fully
developed value for large €. Values of ¢pp reported in this thesis are
obtained by assuming that the minimum point of the curve corresponds to
¢Fp and then extrapolating the left-hand portion of the curve to € = 1.
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D. Comparison of Plug-flow Solutions for Narrow and Nonnarrow
Annular Spaces

»

Due to the considerable simplification offered by the narrow-
annulus approximation, it is of interest to know for what ranges of R the
approximation yields accurate results. Extensive computations for various
values of H, K, Ky, and Z were performed for both narrow and nonnarrow
annular spaces.

The ranges of the parameters were as follows:

H = ——Czwz: 0.1 - 10.0;
Clwl
s S
g =2k 1-R. Iki _ g5, 1.0, 2.0; value of K determinedby R;
R X N

+
e k) F= a1, 0-0.1;
b A Ty,
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Tz1

R=—: 0.1-+0.9;
T22
4 P
e A a2 10001 1.0
a Pe, 2r;; !

The percent difference between the two solutions was griatesi_:'. for
H = 0.1 and 10.0 and for Ky = 0. The magnitude of Z or klkl/kzkz did

not affect the agreement between the solutions to any significant degree.

Figures 3.6 to 3.9 compare results obtained by computations for
both narrow and nonnarrow annular spaces. The Nusselt numbers in these
figures have been "normalized," i.e., divided by their corresponding uni-
form heat-flux value. The graphs indicate that for a large range of R the
approximation for the narrow annular space yields numerical results
which are in agreement with the exact computations. Table 3.3 lists the
percent difference between the solutions for various values of R. Since
the values shown are for the "worst" cases obtained, the percent differences
may be taken as the "maximum error" for the range of parameters tested.
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TABLE 3.3. Maximum Error of Narrow-annular-
space Approximation for Range of
Parameters Investigated, %

To h M2 €
EEEesl R 1 "Bl "H>1 H<C1 B> H<C1 B>

0.1 14.0 189.5 12.2 - 125 134.0 24.4 51.9
B33 91 27.4 6.4 1.0 159 47.5 6.2 12.5
5 5.0 7.2 2.9 0.8 4.4 18.2 125 3.6
0.7 2.0 1.4 1.0 0.2 2.0 6.0 0.2 1.0
el 032 0.0 0.1 0.1 )3 0.8 0.0 0.0

The error is seen to be quite small in most cases for R as low as
0.5. Since most practical heat exchangers have radius ratios which are
greater than 0.5, the narrow-annular-space approximation yields results
which are accurate in the area of practical interest.

Computations with klkt/kzkt = 0.5 and 2.0 gave nearly the same
range of accuracy shown in Table 3.3. Apparently, this small a change in
the relative fluid-conductivity ratio does not affect the agreement between
the narrow and nonnarrow solutions to any significant degree.

E. Numerical Results for Plug-flow Model

Numerical computations in the range of practical interest are useful
in investigating the effect of the operating condi‘tions on the heat transfer
characteristics of a heat exchanger. The operating conditions are specified
by the parameters H, K, Ky, R, and Z. It has been shown that the narrow-
annular-space approximation yields sufficiently accurate results for
R > 0.5, where the value of R is accounted for in K. Therefore, all results
presented are for computations using the narrow-annulus approximation.

1. Fully Developed Nusselt Numbers

Figures 3.10 through 3.15 illustrate the behavior of the fully
developed overall, tube, and annulus Nusselt numbers for a wide range of
the parameters H, K, and K. The Nusselt numbers have been
"normalized" with respect to their corresponding uniform heat-flux value.
The plug-flow Nusselt number for uniform heat flux in a tube is 8.0. For
uniform heat flux from the inner wall of a concentric annulus with a narrow
annular space, the plug-flow Nusselt number is 6.0. Also shown is the plug-
flow Nusselt number for a uniform-wall-temperature boundary condition
normalized with respect to the uniform heat-flux value.
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In Figs. 3.10, 3.11, and 3.12, the tube, annulus, and overall
Nusselt numbers are plotted against the heat capacity-flowrate ratio, H.
Although the mathematical solution is indeterminate at H = 1, the values
computed for the case H ;( 1 clearly show that the fully developed Nusselt
numbers for H = 1 correspond to a uniform-heat-flux boundary condition,
i.e.,, Mg =M =1mM, = 1.0.

For H < 1, the annulus-side Nusselt numbers lie between the

values for uniform wall temperature and uniform heat flux, whereas the
tube-side Nusselt numbers are always greater than the uniform heat-flux
value. For H > 1, the annulus-side Nusselt numbers are always greater
than the uniform heat-flux value, and the tube-side Nusselt numbers lie
between the values for uniform heat flux and uniform wall temperature.
In general, increasing the flowrate in either tube or annulus increases its
respective heat transfer coefficient. This is different from existing plug-
flow solutions for single channels, which predict Nusselt numbers that are
independent of flowrate.

The behavior of the overall Nusselt number for H greater than
or less than unity depends on the value of K. For large K, the heat trans-
fer is controlled by the annulus-side heat transfer coefficient, and the
overall Nusselt number displays the same characteristics as the annulus
Nusselt number. For small values of K, the preceding statement applies
to the tube-side heat transfer coefficient, and the overall Nusselt number
behaves like the tube-side Nusselt number. The effect which the individual
channel heat transfer coefficients have on the overall heat transfer coeffi-
cient can also be determined from Eq. (3.39). For values of K close to
unity, the overall Nusselt number is fairly close to the uniform heat-flux
value. One interesting point about the fully developed overall Nusselt num-
ber is that it has a minimum point which occurs at large values of H when
K is small, and at small values of H when K is large. If the range of H
in Fig. 3.12 were extended, the curves for K = 0.01 and 0.1 would reach a
minimum at some value of H greater than 10.0 and then begin to rise. A
similar statement applies to the curves for K = 2.0 and 10.0 for H < 0.1.

It is important to note that the fully developed overall, tube,
and annulus Nusselt numbers are never less than the value for uniform
wall temperature, but can be significantly larger than values corresponding
to a uniform-heat-flux boundary condition. The Nusselt numbers display
the largest deviation from the uniform heat-flux value at both ends of the
ranges of H and K. For small H and K, the tube and overall Nusselt num-
bers are much larger than the uniform heat-flux value. For large H and K,
the annulus and overall Nusselt numbers are much larger than their uniform
heat-flux values.

In general, for H < 1, increasing K decreases the heat transfer
coefficients, whereas for H > 1, increasing K increases them.
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In Figs. 3.13, 3.14, and 3.15 the Nusselt numbers are plotted
against Ky, for two extreme sets of the parameters' H and K. The Nusselt
numbers display the greatest deviation from the uniform heat-flux value
for small values of Ky, and approach the uniform heat-flux value as Ky,
increases. For Ky > 10.0, all the Nusselt numbers are approximately
equal to their corresponding values for uniform heat flux. This occurs be-
cause a wall with a high thermal resistance controls the heat transfer and
"smooths out" variations in heat flux along its length.

Since the cases presented are extreme, it may be stated that
for Ky > 10.0 the fully developed Nusselt numbers are equivalent to the
values for uniform heat flux, regardless of the value of H and K. For
liquid metal heat exchangers in which structural considerations require
the use of a thick wall, and hence large Ky, heat transfer coefficients
based on a uniform wall flux are sufficiently accurate. In many applica-
tions, however, heat exchangers are designed with a very low thermal
resistance of the wall. The uniform heat-flux coefficients can be seriously
inaccurate for applications in which the range of K, is from 0Oita 2T03

2. Effectiveness Coefficient

The effectiveness coefficient, $(Z), represents a potentially
useful quantity for practical design computations. For a given set of op-
erating conditions, the heat-exchanger efficiency may be computed from
Egs. (3.49a) and (3.49b) provided the values of ¢(Z) and NujFp are known.
The effectiveness coefficient is, in effect, a correction factor which accounts
for the heat transfer in the thermal-entrance regions. Of particular impor-
tance is the fact that ¢(Z) reaches a fully developed value as the heat-
exchanger length is increased. Thus, for long heat exchangers, the only

source of Z dependence for the efficiency is in the exponential terms in
Eqgs. (3.49a) and (3.49b).

As discussed in Section C, computations for the fully developed
effectiveness coefficient were subject to error. Figure 3.16 shows the
effectiveness coefficient plotted against
heat-exchanger efficiency for various
values of H and a fixed value of K. For
H close to unity the computed values
for ¢(Z) reach a fully developed value,
¢pp- However, for H not close to
unity, the fully developed values had to
be obtained by extrapolating the left-
hand portion of the curve to € = 1.0.

)

EFFECTIVENESS COEFFICIENT, ¢(Z)

EFFICIENCY, € i
Table 3.4 gives the results of
Fig. 3.16. Effectiveness Coefficient vs, the computations for ¢pp and NujFD,
Heat-exchanger Efficiency where Nujpp has been normalized



with respect to the corresponding uniform heat-flux value. Because of the
limitation of the accuracy of ¢Fp, the accuracy in the third decimal place
is suspect. The values presented in Table 3.4 are useful as a general
indication of the importance of the thermal-entrance regions and also for
practical computations for which accuracy to two decimal places in dpp
is sufficient. The table is complete enough to permit graphical interpola-
tion for values of H, K, and Ky intermediate to the values presented.
Heat exchangers in which the thermal-entrance regions are unimportant
are characterized by values of ¢pp close to unity. For heat exchangers
in which thermal-entrance regions play a major role, the values of ¢ pp
are much smaller than unity. It is evident from Table 3.4 that ¢pp can be
much smaller than unity. In general, the computations reveal that the
thermal-entrance regions are important for small values of Ky, and for
both large and small values of H.

TABLE 3.4. Computations for ¢pp and 7, for a Narrow Annular Space

0.8

=0 Q=0.1 Q2 =0.2 =04 Q =0.6 Q

K H %rp Mo YFD Mo %D Mo %D Mo ®eD Mo L) Mo

0.01 0.1 0.567 4.736 0.701 2.902 0.770 2.191 0.853 1.544 0.911 1.238 0.962 1.070
05 . 0,772 1.868 0.818 1.277 0.857. 1.207 0.917 1.109 0961 1.047T 0.989 1.012
2.5 0.822 0.824 0.838 0.851 0.866 0.878 0.920 0.928 0.964 0.967 0.991 0.992
5.0 0.770 0.774 0.785 0.807 0.819 0.840 0.889 0.903 0.950 0.955 0.988 0.989
10.0 0.747 0.750 0.760 0.785 0.795 0.821 0.873 0.890 0.942 0.949 0.986 0.988

0.10 0.1 0.671 2.762 0.751 2.186 0.802 1.833 0.871 1.422 0.922 1.193 0.967 1.058
0.5 0.811 1.269 0.850 1.207 0.882 1.158 0.931 1.085 0.967 1.038 0.991 1.010
2.5 0.832 0.855 0.856 0.879 0.883 0.902 0.932 0.943 0.970 0.974 0.993 0.994
5.0 0.777 0.813 0.802 0.842 0.837 0.871 0.904 0.924 0.957 0.966 0.990 0.992
10,0 0.747 0.795 0.771 0.826 0.810 0.858 0.886 0.916 0.950 0.962 0.988 0.991

1.0 0.1 0,798 1.147 0.827 1.132 0.860 '1.115 0.91 1.079 0.955 1.043 0.985 1.014
0.5 0.898 1.015 0.919 1.013 0.937 1.011 0.96 1.007 0.985 1.004 0.996 1.001
2.5 0.850 1.039 0.883 1.033 0.910 1.027 0.951 1.017 0.979 1.008 0.995 1.002
5.0 0.763 1.115 0.810 1.099 0.851 1.083 0.916 1.052 0.961 1.026 0.989 1.007
10,0 0.717 1.218 0.768 1.191 0.816 1.163 0.891 1.106 0.945 1.055 0.983 1.016

10.0 0.1 0.838 0.862 0.857 0.885 0.883 0.907 0.932 0.946 0.969 0.976 0.992 0.994
0.5 0.910 0.918 0.925 0.933 0.940 0.946 0.966 0.969 0.985 0.986 0.996 0.997
2.5 0.799 1.283 0.842 1.217 0.876 1.164 0.929 1.088 0.966 1.038 0.991 1.010
50 0.672 1.798 0.743 1.566 0.797 1.408 0.877 1.208 0.937 1.090 0.980 1.024
10.0 0.625 2.684 0.717 2.095 0.776 1.754 0.856 1.370 0.914 1.163 0.969 1.046
1,K]_a

oy Z[F*T] Tl

3. Heat-exchanger Efficiency

The heat-exchanger efficiency is a simple function of the heat-
capacity-mass flowrate ratio, H, and the number of transfer units, NTU,
as given by Egs. (3.47a) and (3.47b). Use of these equations to compute
the efficiency is complicated, however, by the difficulty of computing NTU,
since the computation of NTU requires knowledge of the average overall
Nusselt number. A more convenient and useful way of presenting € is to



present it as a function of NTUyyp, where NTUyyyr is the number of

transfer units based on a fully developed, uniform-heat-flux overall Nusselt
number. Figure 3.17 shows € plotted vs.
NTUyyyr for fixed values of Hand K.

'°: B 3 For a specific set of operating conditions,
[ 9 the value of NTUyHF may be computed
k o ke quite easily, and the efficiency can then be
g il taken directly from the graph. In order to
J g:a? ] cover a wide range of the parameters H
_ e 1  and K, graphs other than the one shown in

Fig. 3.17 are needed. A possibility for a
future contribution would be the presenta-
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H=o0l tion of such graphs.
K=0I
e e e The curve labeled Ky = «in
NUMBER OF TRANSFER UNITS, NTU,,.c Fig. 3.17 is obtained directly from

Eqs. (3.47a) and (3.47b), and corresponds
: to the condition for which NTU = NTUyyHFp-

itiey ol Té"‘"“e' SR The computations have indicated that this

Based on NulUHF (labels on ! R

the curve correspond to values is a limiting case for large Ky,. It was

of K) previously shown that for large Ky the

fully developed overall Nusselt number

approached the value appropriate to a uniform-heat-flux boundary condition.
Figure 3.17 indicates that another effect of a large Ky is to suppress the
thermal-entrance regions so that the average overall Nusselt number is
equivalent to the fully developed overall Nusselt number. The often-made
assumption that NTU = NTUpp = NTUyyyp is therefore valid for heat
exchangers with very large values of K. For values of Ky in the range
of practical interest (0 = Ky, = 2.0), it is clear from Fig. 3.17 that the
assumption NTU = NTUpp = NTUyyp can lead to a serious underspecifi-
cation of the heat-exchanger efficiency for a given heat-exchanger length.
In practical heat-exchanger design, the underspecification of efficiency
leads to an oversizing of the heat exchanger. Figure 3.18 compares the
heat exchanger length predicted by assuming a uniform-heat-flux boundary
condition with that predicted by the present analysis. It is evident that
large differences exist.

Figl 8.17. Heat-exchange; Efficiency vs.
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4. Local Nusselt Number Distributions

Figure 3.19 shows the local Nusselt numbers, normalized with
respect to their value for a uniform heat flux, plotted as a function of axial
position along the heat exchanger. The scale for the axial position variable
was chosen to better illustrate the
behavior of the Nusselt numbers in
the thermal-entrance regions. Also,
for a given tube-side Peclet number
the abscissa of the graph may be
interpreted as a multiple of tube
| diameters. For a Peclet number of
400 the multiple is unity. Fig-
ure 3.19 clearly shows that thermal-

~

NORMALIZED LOCAL NUSSELT NUMBER, n;

° | 5 eI S DI DS entrance regions exist at both ends
g, R Am,_fo;':,ou “ ® wz-n-|  of the heat exchanger. For the par-
‘;’.—"’z‘,—n ‘;.?tzk'_'l ticular case shown, the thermal-

= entrance regions comprise about
Fig. 3.19. Local Nusselt Number vs. 40% of the total length of the heat
Axial Position exchanger even though the efficiency

is very high. As Z, and hence effi-
ciency, is decreased, the thermal-entrance regions comprise more and
more of the total length of heat exchanger. For the values of H, K, and
Kyw shown, the fully developed portion disappears at an efficiency of about
0.7, and all heat transfer then occurs in the thermal-entrance regions. As
stated before, the assumption that NTU = NTUpp or NujAvV = NujFp can
lead to serious inaccuracies for cases such as this.

Nusselt numbers at the thermal-entrance region are always
higher than their fully developed values. For this reason, neglect of
thermal-entrance effects always leads to an underestimate of heat-
exchanger efficiency and subsequent oversizing of the heat exchanger. Al-
though this procedure always results in a "safe" design, it is not desirable
when space and economic factors are considered. Incorporation of a
"safety" factor into design computations is standard engineering practice;
however, neglect of the high heat fluxes occurring in the thermal-entrance
regions can, in some cases, result in a safety factor which is unreasonably

high.
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CHAPTER IV
EXPERIMENTAL PROGRAM

The experimental program was initiated to study the effect of oper-
ating conditions on the overall performance of the heat exchanger. As men-
tioned in the literature survey, other experimental investigations with
double-pipe, liquid-metal heat exchangers have had as their objective the
measurement of heat transfer coefficients in individual channels. The only
experimental investigation known to the present author which had as its
objective the investigation of the performance of a double-pipe, liquid-
metal heat exchanger is that of Merriam?® for a cocurrent heat exchanger.
The goal of the present investigation was to obtain experimental values for
countercurrent, liquid-metal heat-exchanger efficiency and fully developed
overall Nusselt numbers for comparison with the analytical predictions
obtained through the Kkt approximation.

A. Experimental Approach

The quantities most descriptive of the performance of a heat ex-
changer are the efficiency and fully developed overall Nusselt number.
These quantities may be presented as heat-exchanger performance curves,
which are curves of efficiency or NujFp plotted as functions of the flow-
rates in the heat-exchanger channels. Experimental data for such perfor-
mance curves were obtained in the following manner.

A method first suggested by Stein*® was used to measure the fully
developed overall Nusselt numbers. This method, which comes directly
from the mathematical analysis, requires detailed measurements of the
temperature distribution along the outer wall of the heat exchanger, as
well as measurements of flowrate and inlet and outlet bulk fluid tempera-
tures. The method is described in detail below.

The fully developed overall Nusselt number, as given by Eqs. (3.42a)
or (3.42b), is

o<1
NufFp = HH g (3.42a)
H > 1
NuFp = ﬁ A2, (3.42b)

The alzaove ezxpressions may be used to compute Nujpp if the values of H
and A or B{ are known. The value of H is an easily determined quantity,
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requiring only knowledge of the flowrates in the tube and annulus of the heat
exchanger. The value of the first-order eigenvalue, A\ or B%, may be deter-
mined from the temperature distribution of the outer wall of the heat ex-
changer in the following way. For the fully developed region, the temperature
distribution of the heat-exchanger fluid in the annulus is given by Egs. (3.41b)
or (3.41d). At the outer wall of the annular space (x, = 1), Eqs. (3.41b) and
(3.41d) are

B < 1:
2
€2(1,2) = "1 (1-€)+ AE; 4(1)e Bl(Z-Z)‘
B>
2
€x(1,2) = (:: €1) + C1E;,y(1)e” Xlz,

where Eqgs. (3.29a) and (3.29b) have been used to eliminate the zeroth-order
expansion coefficient.

Taking the log of the above quantities yields

H<l

In [gz(l,z) - -e)] = In [AE;(1)] - BHZ - z); (4.1a)
Mo <

in [gz(l,z) = (1-}1{:61)] = In [C1E;,(1)] - Alz. (4.1b)

These expressions provide a convenient way of measuring the first-order
eigenvalue.

The left-hand portions of the expressions are easily measurable,
requiring only flowrates, inlet and outlet bulk temperatures, and the tem-
perature distribution of the outer wall of the heat exchanger. A plot of this
experimentally determined quantity vs. z yields a curve which is linear in
the region of fully developed heat transfer and whose slope is equal to either
Bf or )\f, depending on the value of H. The fully developed overall Nusselt
number may then be computed from Eqs. (3.42a) and (3.42b).

The method not only yields experimental values of Nujpp, but also
reveals the extent of the fully developed region of heat transfer, since the
fully developed region may be determined by the extent of the linear portion
of the curve.
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Since the temperature distribution for the outer wall may be. con-
veniently and accurately measured, the method is potentially superior ‘to
other methods which determine only average Nusselt numbers or require
local fluid-temperature measurements or measurements of the radial
temperature distribution for the inner wall.

Merriam?® has successfully used an equivalent method to measure
Nusselt numbers for cocurrent heat exchangers.

B. Experimental Apparatus

In order to obtain experimental data for countercurrent liquid-
metal heat-exchanger performance, a liquid-metal-circulating apparatus
or "loop" was needed. The design and construction of such an apparatus
was considerably simplified by the availability of an existing liquid-metal
loop used by Merriam?? for cocurrent heat-exchanger experiments. The
basic features of the cocurrent loop were:

(1) use of mercury as the heat transfer fluid;
(2) variable flowrates in both tube and annulus of the test section;
(3) heating and cooling of mercury streams to produce the desired

inlet temperatures in the test section.

The above basic features were retained in the modification of the
loop for countercurrent flow, although general changes and improvements
in some of the individual components were made. The loop, modified for
countercurrent flow, is described in detail below.

1. Schematic of Flow Circuit

A diagram of the flow circuit is given in Fig. 4.1. The liquid
leaves the pump and splits into three streams, one of which is directed
through a bypass valve back into the suction line of the pump. The other
two streams flow through the tube and annulus of the heat exchanger
(denoted as test section in the figure).

The annulus-side stream flows through a cooler and into a mix-
ing chamber from which it flows upward through the test section. Upon exit
from the test section, the annulus stream flows through another mixing
chamber into the flow-measurement assembly, which consists of an orifice
and electromagnetic flowmeter in series. The annulus stream is then di-
rected back into the suction line of the pump.

The tube stream goes through a similar circuit, passing through
a heater and mixing chamber, downward through the test section, and into a

second mixing chamber from which it passes through a flow-measurement
assembly into the suction line of the pump.
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Fig. 4.1. Diagram of Flow Circuit

An expansion chamber located at the top of the loop was in-
cluded to permit thermal expansion of the mercury. The storage tank
proved useful when draining or filling the loop. Thermocouples were lo-
cated in the mixing chambers and at various points of the loop as indicated
in Fig. 4.1. The operating conditions for eachexperimental run were de-
termined by the flowrate setting, the rate of heat input from the heater, and
the rate of heat removal by the cooler.

A detailed description of the construction of the experimental
apparatus is given in Appendix D.

2. Design of Test Section

With the heat transfer fluid chosen, the design of the test sec-
tions involved a choice of heat-exchanger materials and dimensions which
gave values of K, Ky, R, and Z whlch were in the range of practical in-
terest. The values of H, k,, and kz were determined by the flowrates in
the tube and annulus of the test section. Since the same fluid was flowing
in both tube and annulus of the test sectlon the parameter K was deter-
mined solely by R and the values of k, and kz The values of k, and kz
were computed by means of Eqgs. (2.1a) and (2.1b). The three major design
parameters, then, were R, Ky, and Z. Also of prime importance was the
necessity of designing a test section which realized as many as possible of
the physical idealities which were incorporated into the mathematical
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analysis. Most of the idealities could easily be approximated in the te.st
section with the exception of the requirement for fully developed entering
flow. The tube-side flow presented no problem since an entering flow de-
velopment length could easily be included in the design. As will be dis-
cussed later, a flow-development section for the annulus side was not so

easily attainable.

Two materials, copper and stainless steel, were used in the
construction of each test section. Copper was used for the central tube
of the test sections primarily because of its high thermal conductivity
and the fact that it is easily "wetted" by mercury. The stainless steel
was used to clad portions of the copper tube and to form the outer wall
of the test section. Although flowing mercury will erode copper, other
experimental investigations“‘53’5'1 have shown that no detrimental effects
will occur in short-term use.

Care was taken in the construction of the test sections to keep
the center tube concentric with the outer wall of the test section, since a
marked degree of eccentricity would cause an uneven distribution of flow
in the annular space, leading to a variation of temperature around the
outer wall of the test section. Although all of the test sections had some
degree of eccentricity, temperature measurements taken during heat
transfer tests showed a circumferential temperature variation which was
generally less than 2°F.

Three test sections, of varying design, were built and tested.
The first, 20 L/Dl in length, had adiabatic entrance lengths at either end
to aid in establishing a fully developed annular flow. Because of difficul-
ties with the first test section, the second and third, 47 L/Dl and 10 L/Dl,
respectively, were designed without adiabatic entrance lengths. Because
of the high thermal conductivity of liquid metals, the shape of the velocity
profile is of lesser importance than with nonmetallic fluids. Because of
this, the absence of a fully developed entering-velocity profile for the an-
nulus was not considered to be a serious limitation

All test sections were installed in the loop with stainless steel
ring-joint flanges.

a. 20-L/D, Test Section

The first consideration in the design of the ZO-L/Dl test
section was the inclusion of flow-development sections for the entering
fluids. Various estimates of flow development lengths are found in the
literature,’? ranging from 10 to 20 equivalent diameters for pressure-
gradient development to 50 to 100 equivalent diameters for velocity-
profile development. The flow-development sections consisted of adia-
batic sleeves forced onto either end of the copper tube, as shown in
Fig. 4.2. Computations indicated that the rate of heat flow across the
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air gap of the adiabatic sleeves would be less than 1% of the total heat trans-
ferred by the test section. Due to space limitations, the flow-development
section for the tube was made 20 tube diameters in length and that for the
annulus 17 annulus equivalent diameters in length. The manifold at the an-
nulus fluid entrance was designed to distribute evenly the flow into the annu-
lar space to further aid in its development.

f— g 378" —ﬂ-o— B ——19 3/8" —— A’T
/3" SCH 40
ACTIVE 2" SCH 10 3 SR A0 RIFF =
et
LENGTH SS 304 PIPE PT"6-174" HOLES EVENLY SPACED IV
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Hg lI \rLow DISTRIBUTION MANIFOLD

3/4" SCH 40 3/4" SCH 40 T

SS 304 PIPE SS 304 PIPE

RADIAL DIMENSIONS
1]2 = 375 E

21 = 500

a2 = ! 0785

r

Fig. 4.2. Design of 20-L/Dj Test Section

Dimensions of the test section were dictated largely by com-
mercially available pipe sizes. The central coPper tube had an internal di-
ameter of 3/4 in. and an outside diameter of 1 in. The outer wall of the
annular space had an internal diameter of 2.157 in. The active length of the
test section was 15 in. or 20 L/Dl.

Radiographs of the completed section showed that the width
of the annular space had a maximum deviation of 5% from the value for zero
eccentricity.

Problems were encountered in the construction of the
ZO-L/D, section primarily because of the difficulty of fitting the long adia-
batic sleeves to the copper tube. After several unsuccessful attempts to
shrink fit the pieces together, it was decided to use a force fit instead. The
force-fit method accomplished the purpose of fitting the pieces together, but
in applying the necessary force to shove the tube-entrance adiabatic sleeve
over the copper tube, the weld at the end of the sleeve was cracked. This
crack went unnoticed until the actual heat transfer tests were begun.

When the section was filled with mercury, the mercury
leaked through the crack into the intended air gap. The effect which the
mercury-filled sleeve had on the data will be discussed in a later section.
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b. 47-1/D, Test Section

The primary consideration in the design of a second test
section was the construction of a heat exchanger which would have a fully
developed thermal field over much of its length. Figure 4.3 is a sketch of
the 47-L/D, test section. Because of the difficulty encountered in fitting the
long adiabatic sleeves onto the copper tube in the first test section, the
47-L/D1 section was constructed without a flow-development section for the
annulus. Inlet fittings aided in distributing the entering annulus fluid. Outer
portions of the copper tube were clad with stainless steel since itwas desired
to reduce the possibility of leakage as much as possible. The 47-L/D1 sec-
tion was designed with a narrower annular space than the ZO—L/DI test sec-
tion. Dimensions of the heat exchanger were dictated largely by commercially
available pipe sizes. The copper tube had an ID of 3/4 in. and an OD of 1 in.
The outer wall of the annular space had an ID of l%in. The active length of
the test section was 35-;— in. or 47 L/D;.
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Fig. 4.3. Design of 47- and 10-L/Dj Test Sections

Since the test section was fairly long, extra care had to be
taken to keep the center tube concentric with the outer wall of the annular

space.

Radiographs taken of the completed test section showed that
the point of maximum eccentricity occurred in the middle of the heat ex-
changer. At this point the width of the annular space had a deviation of 7%
from the value expected for zero eccentr.icity.
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c. 10-L/D, Test Section

The third test section was of the same design and dimen-
sions as the 47-1L/D, test section except that it was much shorter, being
only 7% in. in length. The prime consideration in the design of this section
was to provide a heat exchanger in which no fully developed region of heat
transfer existed. Figure 4.3 shows the designs of both the 47- and the
lO-L/D, test sections.

Radiographs of the completed section showed that the width
of the annular space had a maximum deviation of 5% from the value expected
for zero eccentricity.

3. Instrumentation

a. Flow Measurement

The mercury flowrates in the tube and annulus of the test
section were each measured by two methods. The first, in which a cali-
brated orifice and manometer assembly was utilized, was used primarily
to calibrate the second, employing an electromagnetic flowmeter. The use
of the electromagnetic flowmeter was preferred to that of the orifice ar-
rangement for actual heat transfer tests, since its range was virtually un-
limited compared to that of the orifice assembly. The flowmeter emfs were
read on a Hewlett-Packard Model 2401C integrating digital voltmeter. The
accuracy of the electromagnetic flowmeters is estimated to be within 5%
of the actual flowrate.

N

Details of the construction and calibration of the flow-

measurement devices are given in Appendix D.

b. Temperature Measurements

All temperature measurements were made with select-
grade copper-constantan thermocouples. All thermocouples which were 1n
direct contact with mercury or water were sheathed in stainless steel jackets
and inserted through compression fittings into the loop. The locations of the
sheathed thermocouples are shown in Fig. 4.1. Thermocouples which were
used to measure the temperature distribution of the outer wall of the test
section were bare-bead thermocouples. These thermocouples were affixed
to the outer wall of the test section by fiber glasstape for the experimental
runs with the 20-L/D, test section and for a portion of the runs with the
47-L/D, test section. Inspection of the thermocouples midway through the
series of tests with the 47-L/D, test section revealed that the high tempera-
tures had caused the fiber glasstape to stretch and that some of the thermo-
couples had pulled away from the wall of the test section. The thermocouples
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were then fastened to the test section with epoxy cement, a method which
proved vastly superior to merely taping them.

The thermocouples for the measurement of the tempera-
ture distribution of the outer wall were spaced at equal intervals along the
active length of the test section. For the 20- and 47-L/D1 test sections,
31 thermocouples were used to measure the outer wall temperatures, and
for the lO-L/Dl section 16 were used. Thermocouples were also placed
along the entrance lengths of the ZO-L/DI section and at various locations
around the circumference of all three test sections.

All the thermocouples were calibrated in a well-stirred,
heated silicon oil bath prior to installation in the loop. Between the tem-
perature limits of 70 to 230°F the thermocouples gave readings which were
within 1/2°F of each other. This was judged to be accurate enough for the
purposes of the experiment. No attempt was made to calibrate the thermo-
couples absolutely since only differential measurements were required for
the experiment

After installation in the loop, the thermocouple leads were
fed through an insulated switchbox with an ice-junction reference to the
Hewlett-Packard digital voltmeter. The switches used in the switchbox
were high-quality double-pole, nonshorting thermocouple switches.

C. Experimental Procedure

1. Cleaning of Loop Components

Prior to the series of experimental runs with the first test
section, the loop was given a thorough cleaning. Portions of the loop which
could be dismantled and removed were pickled in a dilute solution of citric
acid. This procedure removed any visible trace of surface impurities, and
left the surfaces clean and shiny. Portions of the loop which could not be
removed were scrubbed and flushed with acetone. To remove possible
grease and impurities from the heat transfer surface of the test section
and to promote wetting of the copper by mercury, the entire section was
treated with a 12.5% solution of hydrochloric acid. After reassembly, the
entire system was purged with nitrogen. Similar, although not quite as
thorough, cleaning procedures were followed before installation of the sec-
ond and third test sections.

i Mercury used for the experiment was cleaned in a Bethlehem
Oxifier and filtered through a Gold Seal filter. The loop was filled with a
fresh charge of mercury for each test section

Of special concern was the wetting of the copper heat transfer
surface by the flowing mercury as well as the extent to which the mercury
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eroded the copper surface. Inspection of the heat transfer surfaces after
completion of the runs with each test section revealed that the mercury did
wet the copper and that the only visible evidence of erosion was a slight
pitting of the surface. Contamination of the mercury itself was probably
so slight as to have no effect on the experimental measurements Samples
of mercury taken from the loop during heat transfer tests were clean and
bright in appearance and had no visible contamination.

2. Operation for Data

With the loop filled with mercury and all safety controls in
readiness, the circulating pump was energized and the flowrates adjusted
to the desired setting. The water supply for the cooler was then turned on
and adjusted to the proper flowrate. If required, the heater was energized
and set at the desired power level. (For some of the runs with the canned
rotor pump, the pump 1tself supplied a sufficient amount of heat to the sys-
tem and the heater was not used.)

The loop was operated until stable conditions were reached
The loop was considered to be "stable" when the inlet and outlet tempera-
tures of the test section varied less than 1/2°F over a period of 30 min
The inlet and outlet temperatures of the test section were read and re-
corded at 15-min intervals during the stabilization of the loop. It gener-
ally took at least 4 hr from startup for the loop to stabilize and about 2 hr
for each successive run.

With the loop at stable operating conditions, the flowmeter and
thermocouple emfs were read and recorded. Algo read and recorded were
the voltages across the heaters and the cooling water manometer differen-
tial The readings were then rechecked for possible errors in the reading
or recording of the data. Each experimental run was assigned a run number

After tabulation of the data, the loop was adjusted to the operating
conditions for the next run

After completion of the desired number of runs, the loop was
shut down by turning off the heaters, cooling water, and pump, in that order.
The safety controls were then turned off, and the main power switch for the
loop was opened.

3 Reduction of Data

The computations of most importance in the analysis of the data
were the calculations for heat-exchanger efficiency and fully developed over-
all Nusselt number. Other computations, such as heat balances across the
cooler, are of lesser importance and are not described here. A detailed de-
scription of the entire method of data reduction may be found 1n Appendix B



a. Calculation of Efficiency

The heat-exchanger efficiency was calculated from mea-

surements of both tube and annulus heat flux.

EIg
e, W, [T4(0) - T,(L)] } o
= c;, W, AT, !
TZ(O) - -TZ(L)' Annulus
- Jnlmpr <
H ol
T,(0) - "1—"1(1-4)‘ i
= T
caWo[T,(0) - T,(L)]
€ = A0 - ) Annulus
T W, Ty
where

M = T = ()

In the ideal case, €, = €, in the above equations. Because
of experimental error, however, the measured values of €; and €; usually
differed from each other by a few percent. The percent difference between
€; and €, is equivalent to the heat-balance error in the test section. The
main cause of the heat-balance error is thought to be heat losses from the
lines leading from the test section to the mixing chambers, where the fluid
temperatures were measured. These extraneous heat losses affect the
measured heat fluxes in a consistent manner and may be corrected to some
extent. Since part of the heat transferred to the annulus fluid in the test
section was lost in the entrance and exit lines, the measured heat flux was
lower than the actual heat flux in the test section. For the tube side, the
measured heat flux was larger than the actual heat flux in the test section
since an additional amount of heat was lost in the entrance and exit lines
The result of these extraneous heat losses was that €, was lower than the
actual test-section efficiency, while €, was higher. The error may be re-
duced to some extent by taking the efficiency to be the average of €; and €,
The error of the average value is equal to one-half of the difference in the
errors of € and €,. The experimental heat-exchanger efficiencies presented
in this thesis are the averages of €, and €,. A more complete discussion of
the expected maximum experimental error is given in Appendix E.



b. Calculation of Nujpp

The fully developed overall Nusselt number was computed
by the method outlined in the first part of this chapter. The left-hand sides
of Eqs. (4.1a) and (4.1b) were plotted against axial position as follows:

RG]
l-¢€

In [Ez(l,z) - Hﬁ] vs. z;
H.> 1

In [g : ‘1: < gz(l,z)] vBL e,
where

Tarz, k) - T1(0)

o o e

H = c,W;/c;W,,
and

€ is the efficiency.

The curves so obtained were Ligear in regions of fully de-
veloped heat transfer. The linear portion of each curve was determined by
inspection, and a least-squares method was then used to fit a straight line
to the experimental points in the linear region. The slope of this straight
line was then used to compute the fully developed overall Nusselt number
according to Eqs. (3.42a) and (3.43a).

The value of € used in the computation was the average of
€, and €,. A discussion of the expected maximum experimental error 1s

given in Appendix E

D. Analysis of Experimental Measurements

1 Tests with the 20-L/D, Test Section

The accuracy of the experimental data for comparison with the
results of the mathematical analysis depends, in part. on the degree to which
the experiment realizes the physical idealizations upon which the mathemati-
cal analysis is based. It was for the purpose of providing fully developed
entering flow that the adiabatic entrance lengths were included in the design
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of the 20-1/D, test section. As mentioned before, the "adiabatic" sleeve
for the entering tube flow was filled with mercury for the entire series of
runs with the ZO-L/DI test section. The effect which the mercury-filled
sleeve had on the data is discussed below.

The data taken with the first test section was reduced to yield
heat-exchanger efficiencies and fully developed overall Nusselt numbers.
These quantities are determined by the operating conditions of the heat
exchanger as specified by the parameters H, K, Ky, R, and Z. With the
test-section materials and dimensions fixed and the heat transfer fluid
chosen, the efficiencies and Nusselt numbers should be dependent only on
the flowrates in the tube and annulus of the test section. In addition to a
dependence on flowrates, however, the initial series of runs with the
ZO-L/DI section revealed that the efficiencies and Nusselt numbers were
strongly dependent on AT, the inlet temperature difference of the fluids.
This dependence is illustrated in Figs. 4.4 and 4.5 for runs in which the
flowrates were held constant and only AT, was varied. The dependence on
AT, suggested the presence of a mode of heat transfer other than that oc-
curring in the active length of the test section. The fact that this extrane-
ous heat transfer occurred through the tube-entrance sleeve was partially
confirmed by the observation that the outer wall temperature of the test
section rose steadily along the length of the sleeve, indicating a significant
amount of heat transfer through the sleeve. Similar measurements along
the sleeve at the opposite end of the test section showed very little tem-
perature rise. It was not known for certain, however, that the tube-
entrance sleeve was filled with mercury until the test section was removed
and torn apart.

0.8
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o z
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& Pe. =100 ~ 2 03— PREDICTION =1
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| ~ PREDICTION 2
05 | | | | & |
Y o2 | | |
o 40 80 120 160 200 © (] 40 80 120 160 200
INLET TEMPERATURE DIFFERENCE, ATo INLET TEMPERATURE DIFFERENCE, AT,
Fig. 4 i ; i
g. 4.4, Ef.fect of Fluid Inlet Temperature Fig. 4.5. Effect of Fluid Inlet Temperature
g(;fference on Efficiency for the Difference on Fully Developed
-L/Dj Test Section Overall Nusselt Number for the

20-L/D1 Test Section

With the AT, dependence present in the results from the ZO-L/DI
test section, a meaningful comparison with the analytical prediction could not
be made. Attempts to produce a satisfactory analytical model to explain the
AT, dependence failed. Merriam?? encountered the same problem in his co-
current experiments and concluded that the extraneous heat transfer was due
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to conduction through the end plates of the heat exchanger The method
which Merriam used to analyze his data was to first plot € or Nujgp vs.
ATy, as in Figs 4.4 and 4 5. He then extrapolated the data to the value
for ATy, = 0 and took that value as the correct one. Merriam's assump-
tion was that the extraneous heat transfer effect was dependent only on
ATy and that the AT, dependence would vanish at AT, = 0 Merriam
achieved moderate success with this method of analysis, so the present
experimental program with the ZO-L/D, test section was conducted to
obtain data for the plots of € or Nujpp vs. ATy. Values of € and Nujpp
obtained in this manner showed a great deal of scatter, particularly for
high flowrates in the annulus Inasmuch as the method of analysis was
subject to large errors, particularly errors of judgment in the extrapo-
lation of the data to ATy = 0, the results from the ZO-L/Dl test section
were considered unreliable and were discarded

2 Tests with the 47-L/D1 Test Section

Because of the difficulties encountered with the adiabatic sleeves
on the first test section, the 47-L,/D1 test section was constructed without
flow-development lengths 1n order to reduce the occurrence of extraneous
heat transfer as much as possible Initial operation of the 47-L/D, test
section was for the purpose of determining the effect of the inlet tempera-
ture difference, ATj, on the efficiency and overall Nusselt number The
results of this 1nitial series of tests showed that the AT, effect had been
eliminated

As the tests continued, however, the temperature distribution
of the outer wall began to exhibit a considerablg amount of distortion This
distortion eventually became so pronounced that the temperature distribu-
tion of the outer wall could not be used for determining the Nusselt number
Inspection of the thermocouples on the outer wall revealed that the tape
which held them in place had stretched and that most of the thermocouples
had pulled away from the wall, thereby giving erroneous readings. The
thermocouples were then cemented in place with extra care taken to keep
the bead in contact with the wall A resistance meter was used to check
the contact. The data taken with the thermocouples cemented in place
showed much improvement over the data taken with the thermocouples
taped in place. The accuracy of the data taken with the taped thermocouples
was uncertain, and the data were discarded.

The actual operation of the 47-L/D, test section "for data" be-
gan after the thermocouples were cemented in place. A total of 40 usable
experimental runs were made for flowrates corresponding to Peclet num-
bers in the range from 100 to 1500 for the tube and from 50 to 300 for the
annulus. The plots of temperature for the outer wall for all of the test
showed a well-defined linear portion whose slope was proportional to the
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fully developed overall Nusselt number.
sample of such a temperature plot
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Figure 4.6 is a representative

for the 47—L/D1 test section. Heat-

balance deviations for the test section
were generally less than 15%. The
heat-balance deviation was used as a
general indication of the error of the
experimental results. The data for
the 47-L/D1 test section are tabulated
in Appendix C.

3. Tests with the 10-L/D,
Test Section

The IO-L/D, test section
was tested over the same ranges of
flowrates as the 47-L/D, test section.
Initial tests in which the flowrates
were held constant and only AT, was

varied gave efficiencies which were independent of AT,. The plots obtained
from the outer-wall temperatures did not have a linear region correspond-

ing to fully developed heat transfer.
Figure 4.7 is a typical temperature
plot for the outer wall for the tests
with the 10-1/D; test section. All of
the plots for the various runs pro-
duced the "S" shaped curve.

Since a fully developed
region was not present in any of the
tests, only heat-exchanger efficien-
cies were calculated. Heat-balance
deviations for the lO-L/DI test sec-
tion were somewhat higher thanthose
for the 47-L/D1 test section, prob-
ably because of the difference in the
lengths of the two test sections. Less
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Fig. 4.7. Outer-wall Temperature Plot for Test
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heat was transferred in the 10-L/D, section, so the error due to losses in
the lines leading to the mixing chambers, which should have remained ap-
proximately the same, contributed to a larger deviation of heat balance.
The data for the lO-L/Dl test section are tabulated in Appendix C.



CHAPTER V
RESULTS AND DISCUSSION
Operating curves for the heat exchangers used in the experiments
were computed from the present mathematical analysis and from the tra-

ditional method of heat-exchanger design. The theoretical operating curves
are compared with the experimental results.

A. Heat-exchanger Calculations

Computations were performed to obtain theoretical operating curves
for the heat exchangers used in the experiment. Efficiencies and fully de-
veloped overall Nusselt numbers were computed from the present mathema-
tical analysis by means of the kt approximation. The nonnarrow annular-
space form was used for the computations. The values of the major
parameters for the 47- and 10-L/Dl test sections are given in Table 5.1.
Computations for the 20-L/D, test section are not given because no reliable
experimental data were obtained and a comparison between theory and data
was not possible.

TABLE 5.1. Dimensionless Parameters for the Test Sections

Test Section

Parameter 47 TfDy 10 3L/
c,W, k, ry; + r;; Pe; Pe, Pe,
= S =ty 3.15 =—=2 3.15
- oW, k) T Pe, Pe, Pe,
-
- R kkt K Kkt
1 IRR—I—L— 0.38.'T 0.38-%
k,k} K} ki
k kt
K. wcdak gn (m) 0.00679 kf 0.00679 k;
w ri2
R = =2l 0.727 0.727
ra2
+ +
4 ) S ky k,
= k 189.5 =L 40
E Pay Sra Pe, Pe;

The values of the thermal conductivities used in Table 5.1 are given
in Appendix B. The values of ki and ki were calculated from the uniform-
heat-flux correlations of Buleev® and Dwyer,°”® Eqs. (2.1a) and (2.1b). For
the 47- and lO-L/Dl test sections, Eqs. (2.1a) and (2.1b) reduce to the
following:

81



82

Buleev’--Uniform Heat Flux in Tube:

L S e 0.0303Re}- 1% (5.1a)

Dwyer(’_s-—Uniform Heat Flux at Inner Wall of Annulus:

= 5.890; Pe, = 325;
NuZUHF 5.89 €,

0.771
79.5Pe .
Nu,ygp = 5-779 + 0.0222 |Pe;, - 2 M:l BT e
4T 0.0936Pe2'91")

(5.1b)
The corresponding fully developed plug-flow Nusselt numbers are: for a
uniformly heated tube, Eq. (3.1c), Nu = 8; for a uniformly heated annulus

Eq. (2.1e), Nu = 6.06 for both test sections, since their radial dimensions
were identical.

The expressions for k‘f' and k'z" are

gy )

ki = gNuw ygp (5.2a)
and

T

kz = 55 N UHF (5-2b)

With the above relations for kf and kg' chosen, the results of the computa-
tions depend only on“the tube and annulus Peclet numbers. Computations
were made for tube-side Peclet numbers in the range 100-1500 and for
annulus-size Peclet numbers of 50, 100, 200, and 300. For the computa-
tions for efficiency where only the zeroth-order expansion coefficient was
needed, 40 equations of the infinite set were used.

The traditional method of heat-exchanger design was also used to
predict operating curves for the heat exchangers. The individual-channel
Nusselt numbers were assumed to be uniform over the entire length of the
heat exchanger and were those appropriate to a uniform-heat-flux boundary
condition as given by Eqgs. (5.1a) and (5.1b). The overall Nusselt number,
Nutl’UHF' was then computed from the individual-channel Nusselt numbers
by means of Eq. (3.39). The heat-exchanger efficiency, EyHF’ Was com-
puted by means of Eqs. (3.47a) and (3.47b). The results of all the heat-
exchanger computations are given in Table 5.2.



TABLE 5.2. Results of Computations for Test Sections

Test Section
47 LDy 10 L/Dy
+ +
Pep  Pe, k| K H K Ky Nufep Ny z L P z € EunF
100 50 0723 0971 1517 0.282  0.00491 3.914 4154 1369 0977 0979 02893 0719 0.6%
200 S0 081 0971 0788 0321 0.00557 4719 4543 0777 0921 0911 01643 0625 0566
400 50 099 0971 0394 038  0.00672 6.045 5.148 0468 094 098 00989 0767 0.666
600 50 L1139 0971 0263 0445 0.00773 1.017 5.630 0359 099 095 00759 089 0717
800 50 1218 097 0.197 0.499  0.00867 1.713% 6.035 0302 099 098 00639 082 0751
1000 50 1410 0971 0.158  0.551 0.00957 8.285 6.386 0267 099 09%9 0054 0883 0776
1500 50 L7116 0971 0.105 0.671 0.01164 9.216 7.103 0216 0999 0999 00457 0910 0818
100 100 0723 0971 3154 0282  0.00491 372 4154 139 095 0%7 0289 0774 0755
20 100 0.821 0971 1517 0.321  0.00557 4.305 4.543 ormn 0912 091 01643 0573 0519
400 100 099 0971 0788 0387 0.00672 5317 5.148 0468 083 0817 00989 0492 0412
600 100 1139 0971 052  0.445  0.00773 6.149 5.630 0359 0923 08% 00759 055 0459
800 100 1278 0971 0394 0499 000867  6.827 6.035 0302 0957 091 00639 0612 0493
1000 100 1410 0971 0315 0551 0.00957 7.381 6.386 0267 0973 0.91 0.0564 0644 0520
1500 100 1716 0971 0210 0671 0.01164 8.390 7.103 0216 0988 0.974 00457 0694 0568

0723 0971 6308 0282  0.00491 3.670 4154 1369 09% 099 02893 0803 0784
0821 0971 3154 0321  0.00557 4125 4543 0777 0959 0963 01643 0620 0557
099 0971 1577 0387  0.00672 4.922 5.148 0468 0807 079% 00989 0445 0362
1139 0971 1051 0445  0.00773 5.601 5.630 0359 0670 0648 00759 0355 025
1278 0971 0788 0499  0.00867 6.183 6.035 0302 0724 0692 00639 0377 0285
1410 0971 0631 0551  0.00957 6.683 6.386 0267 0778 0740 0.0564 0407 0304
1716 0971 0421 0671 0.01164 1.660 7.103 0216 0854 0811 00457 045 0340

0723 0971 9.461 0282  0.00491 3.676 4154 1369 096 099 02893 0815 0793
0821 0971 4731 0321  0.00557 4.088 4543 0777 099 0973 01643 0639 0570
0990 0971 2365 038  0.00672 4.808 5.148 0468 085 0842 00989 0471 0375
1139 0.971 1517 0445  0.00773 5.421 5.630 035 0735 0713 00759 0383 0.287
12718 0971 1183 0499  0.00867 5.952 6.035 0302 0643 0614 00639 0325 0.2%
1410 0971 0946 0551  0.00957 6.415 6.386 0.267 0607 0573 00564 0300 0214

1000 . .
1716 0971  0.631 0671  0.01164 7.343 7.103 0216 0701 0.655 00457 0344 0241

1500

g
gEzEyss BEEEmss

B. Experimental Results

The experimental data were reduced aceording to the procedure
given in Appendix B. The heat-exchanger efficiencies and fully developed
overall Nusselt numbers which were obtained were functions of the flow-
rates in the tube and annulus of the test sections. The experiment covered
a range of flowrates corresponding to Peclet numbers of 100 to 1500 for
the tube side and of 50 to 300 for the annulus side of the test sections. The
operating conditions and results for each experimental run for the 47- and
10-L/D, test sections are given in Tables 5.3 and 5.4, respectively. As
mentioned previously, the data for the ZO-L/D, section were considered
unreliable and were discarded. In addition, only the last 40 runs with the
47-L/D, test section are tabulated, since the data taken in the first 42 runs
had to be discarded because of errors in the measurements of the outer
wall temperature. These errors were discussed in Chapter IV.

The accuracy of the experimental results in Tables 5.3 and 5.4 can
be judged by the magnitude of the "expected maximum error" given in
Appendix E. This expected maximum error is considered to be the upper
limit for experimental error. The actual experimental error is probably
considerably less than the values reported in Appendix E.
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TABLE 5.3. Experimental Results with the 47-L/Dy Test Section

Test Section Test Section
Heat Balance Heat_ E_alance
Run Pe; Pe, H  Nufp €  Deviation, % ATg [Run Pey Pe, H  Nufgp € Deviation, % AT
43 290 199 2144 4838 0.888 1.719 46.7 63 98 98 3107 4.092 0974 4.780 67.7
4 389 199 1597 5060 0.795 2.289 9.3 64 143 98 2145 4456 0.963 3.644 8.3
45 488 19 1275 538 0.717 3.280 489 65 194 99 1597 4638 0910 4.91 8.4
46 582 199 1067 5542 0.653 2.490 51.1 66 287 105 1144 5031 0.798 1.396 8.9
a7 781 19 0798 6.192 0.690 2.728 50.6 67 394 103 0.821 5365 0.79 2.110 889
48 975 199 0639 6.677 0.744 3132 51.3 68 488 99 0633 5575 0.862 2.684 90.2
49 U711 19 0532 7.022 0779 1.095 53.3 69 588 99 0526 5873 0.899 3.246 92.1
50 1373 199 0450 7324 0.808 2.114 53.8 70 783 103 0411 6320 0931 4.326 89.2
51 104 199 592 3939 0.990 0.664 29.6 71 981 103 0328 6.717 0.957 4.785 90.4
52 146 199 4233 3988 0.998 4.636 36.8 2 176 102 0272 71371 0962 1.888 911
53 193 199 3216 4588  0.953 6.165 403 73 1373 101 0231 7518 0973 2.7718 8.7
54 193 300 4.81 4903 0953 7.609 239 7 108 49 1438 4234 0972 1.289 1103
55 289 300 3243 4816 0.905 3.297 294 5 204 49 0758  5.603  0.900 7.617 1335
56 384 300 2445 5080 0.844 1154 324 76 300 49 0520 5204 0.968 2l 138.0
57 476 300 1974 5128 0.78 1.265 339 7 394 49 0396 5233 0993 4.893 138.0
58 587 300 1598 5574 0.719 0.988 34.6 8 598 49 025 5934  1.006 5.670 143.0
59 783 300 1197 6070 0.625 1.873 349 9 9719 49 0159 7.131 1002 3.983 1429
60 975 298 0957 6.859 0.576 2.29 35.9 80 780 51 0205 6572 0980 0.021 142.5
61 1171 300 0.802 7.235 0.616 1.764 36.6 81 1157 49 0135 7495 0.994 2.854 146.4
62 1364 300 0.689 7.327 0.649 1.814 35.3 & 1319 48 0109 7.837 1019 7125 146.9
TABLE 5.4 Experimental Results with the 10-L/Dj Test Section
Test Section Test Section
Heat Balance Heat Balance

Run Pe; Pey H € Deviation, % ATy Run Pe) Pey H € Deviation, % ATy

1 48 100  0.641 0516 2.584 55.5 24 1281 196 0478 0439 2.926 359

2 485 9 0.637  0.529 5.247 .7 25 1574 198 0.393 0.465 6.962 359

& 48 100  0.651  0.521 3.178 99.4 26 187 299 4992 0721 2.882 328

4 971 9 0320 0627 1.522 64.2 27 288 298 3226  0.546 12.518 4

5 970 97 0313  0.641 4.946 9.5 28 389 300 2409 0473 6.137 18.7

6 970 100 0324 0631 3.969 96.0 29 481 299 1943  0.427 1534 216

1 98 9 3163  0.809 11.063 139 30 59 298 1565  0.383 3.406 239

8 145 99 2133 0695 3113 21.6 2l 7299 129 0323 2.521 26.5

9 198 100 1580 0.58 2.44 37.0 32 966 298 0966  0.292 L7713 25.0

10 292 99 1067  0.461 7.661 438 33 1278 300 0735 0315 3.687 269

11 391 9 0791 0484 4723 50.3 34 1551 302 0608 0337 .715 26.0

12 585 98 0527 0552 5.273 613 35 95 49 1625 0.790 0.698 55.6

13 75 100 0404 0.590 5.660 61.8 36 148 49 106 0615 2.307 7.6

14 1278 9 022 0671 6.547 66.5 37 194 49 0789  0.642 2.262 819

15 1589 101 0199  0.687 5.067 64.2 38 291 49 0533 0701 3.004 92.8

16 148 199 4214  0.688 31.352 20.1 39 385 49 0398 0753 4512 96.8

17 195 198 3168 0.628 18.667 253 40 483 48 0315 0.3 5.987 100.4

18 292 19 213 0516 14363 333 4] 58 49 023 0817 6.661 100.2

19 38 19 1611 0450 7.538 26.7 a2 5 48 0199 0862 7.938 101.7

20 487 19 1276 0390 9.431 289 23 965 49 0161 0881 9.516 97.8

21 585 198 1060 0.349 9.294 310 4 1271 49 0121 0908 9.454 100.3

22 783200 0798 0367 7.654 3.6 45 1551 48  0.097 0930 10.101 1016

23 974 19 0638 0402 10.838 328




C. Comparison of Theory and Experiment
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1. Results with the 47-L/D, Test Section

a. Fully Developed Overall Nusselt Number

The fully developed overall Nusselt numbers determined
experimentally were compared with theoretical operating curves computed
from the present analysis and from the traditional method, assuming a

uniform-heat-flux boundary condition.
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for runs in which the annulus flowrate was held constant and the tube-side
flowrate was varied. The point at which the theoretical curves cross on
the graphs is the condition for H = 1. The portions of the curves for

H > 1 lie to the left of the intersection and the portions for H < 1 lieto

the right.

The operating curves computed by the present theory and
the traditional method did not exhibit significant differences for values of
H greater than unity. Significant differences between the results of the
present theory and the traditional method of heat-exchanger design are
apparent, however, for values of H much smaller than unity. The differ-
ence is most in evidence in Figs. 5.1 and 5.2, where the low-annulus-side
Peclet numbers resulted in fairly low values of H. This is in agreement
with the plug-flow results reported in Ch. III, where the greatest differ-
ences between the traditional and present methods occurred for very small
or very large values of H, depending on whether K was small or large.
Since the value of K for the experiment ranged from 0.3 to 0.7, the greatest
differences occurred for small H.

The experimental results for H > 1 show somewhat better
agreement with the traditional method than with the present analysis. There
is some scatter in the data for H > 1, however, and the results of the error
analysis (see Appendix E) indicate that the values of Nu‘l’FD for H > 1 had
the greatest possibility for error.

The experimental results for H < 1 in Figs. 5.1 and 5.2
fall approximately equidistant between the curves computed from the present
theory and the traditional method. For the operating curves shown in
Figs. 5.3 and 5.4, the data for H < 1 agree better with the present analysis,
although the difference between the present analysis and the traditional
analysis 1s slight.

b. Heat-exchanger Efficiency

The experimentally determined heat-exchanger efficiencies
for the 47—L/Dl test section are shown in Figs. 5.5 to 5.8, where they are
compared with operating curves predicted by the present theory and by the
traditional method. The minimum points of the operating curves corre-
spond to the conditions for which H = 1, whereas portions of the curves
to the left of the minimum point correspond to H > 1 and points to the
right correspond to H < 1. The operating curves for efficiency have a
discontinuity at H = 1, arising from the way € 1s defined.

Differences between thg theoretical operating curves in
Figs. 5.5 to 5.8 are seen to be quite small for values of H greater than
unity. For values of H less than unity the difference is more pronounced,
although either operating curve would probably be accurate enough for
practical design computations. The experimental data show good agreement
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with the theoretical operating curves over the entire range of operating
conditions for which data were obtained. The data exhibit somewhat better
agreement with the curve computed from the traditional method than with
that computed from the present theory.
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2. Results with the 10-L/D, Test Section

The experimental data for the short, lO-L/Dl test section
yielded heat-exchanger efficiencies for a heat exchanger in which all or
most of the heat transfer occurred in thermal entrance regions. It was
mentioned previously that no fully developed region could be detected from
the temperature distribution of the outer wall. The experimental results
with the 10-L/Dl test section are shown in Figs. 5.9 to 5.12 where they
are compared with operating curves computed by the present analysis and
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by the traditional method. It is evident from the figures that significant

differences exist between the differently predicted operating curves.

The

experimental results from the 10-L/D1 test section agree quite well with

the curve computed from the present analysis.

The data strongly support

the contention that entrance-region effects are important for liquid metal
heat exchangers and that the traditional method of design can lead to
significant inaccuracies for short heat exchangers by neglecting the high
heat fluxes occurring in the thermal-entrance regions.
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The present analysis has indicated that significant errors can
result from use of the traditional analysis for heat-exchanger design
because:



1) The actual fully developed overall Nusselt number may be quite
different from that assumed in the traditional analysis.

2) The high heat fluxes occurring in the thermal-entrance regions
of liquid metal heat exchangers are not negligible and may
cause serious errors if ignored.

For the operating range covered in the experiment with the 47-
L/Dl test section, the experimentally determined overall Nusselt numbers
did not exhibit the significant differences predicted by the analysis. There
were differences, particularly for small values of H, but these differences
were not as large as those predicted by the present analysis and did not
seem to affect the overall heat-exchanger performance since the experi-
mental results for efficiency agreed quite well with the results of the
traditional analysis. The experimental results, then, failed to support
substantially the first prediction of the analysis, although the trend of the
data for small values of H in Figs. 5.3 and 5.4 indicate that these signifi-
cant differences could exist for values of Pe;, which were beyond the range
of the experimental apparatus. It seems likely that the differences pre-
dicted by the analysis could occur for heat exchangers which have very
small annular spaces and which therefore must be operated at very small
values of H.

The experimental results obtained with the lO-L/D, test section
strongly support the present analytical prediction that the thermal-entrance
length in a liquid metal heat exchanger is important, particularly in a short
heat exchanger which may have no significant fully developed region. As an
illustration of the errors which can occur in the use of the traditional
method of heat-exchanger design, the present theory and the traditional
method were used to predict heat-exchanger lengths for a heat exchanger

with the same radial dimensions as the test sections used in the experiment.

The computations were performed for a tube-side Peclet number of 1000
and an annulus-side Peclet number of 100. With the flowrates constant, the
parameters H, K, K, and R were calculated and the parameter Z was
varied. Table 5.5 gives the results of the computations.

TABLE 5.5. Heat-exchanger Lengths Predicted by
Present and Traditional Analyses

Pe, = 1000; Pe;, = 100; H = 0.315; K =
L(in.

0.551;
on g e o )
K, = 0.00957; R = 0.727; Z = 933

Length Predicted Length Predicted
Efficiency of by Present by Traditional
Heat Exchanger Analysis (in.) Analysis (in.)
0.2 0.75 2.15
0.4 2.80 5.10
0.6 6.35 9.20
0.8 13.20 17.50
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It is evident from these results that the traditional method over-
estimates the length required for a given efficiency by a substantial amount
for the lower efficiencies. The differences between the present and tradi-
tional methods become smaller as the efficiency increases, although the
traditional method still overestimates the length by more than 30% for the
fairly high efficiency of 0.8.

The experimental evidence was partially successful in supporting
the results of the present analysis. The large differences in Nu’ were
not in evidence in the data, but trends indicated that they might occur for
larger values of Pe;. More experimental data for different test sections and
widely varying values of H are needed before a definite statement can be
made about the validity of the traditional assumption regarding the heat
transfer coefficients.

The experimental evidence regarding the importance of the thermal-
entrance regions gives strong support for the present analysis in suggesting
that significant errors can arise when such regions are ignored. In view
of the experimental results for the lO—L/Dl test section, the analysis gives
results which are quite accurate for the design of short heat exchangers.
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CHAPTER VI
SUMMARY

Heat transfer in countercurrent, liquid metal, double-pipe heat
exchangers was investigated both analytically and experimentally. None
of the traditional simplifying assumptions regarding the heat transfer co-
efficients of individual channels were incorporated into the mathematical
analysis. The analysis, in its most general form, was applicable to both
laminar and turbulent flow. An approximation was introduced which per-
mitted the use of a plug-flow model for turbulent, liquid metal heat ex-
changers. The approximation was accurate for Peclet numbers up to and
possibly greater than 1000. Since practical heat exchangers may be oper-
ated at Peclet numbers of 1000 or less, the approximation provides a con-
siderable simplification for a physically important range. For application
to heat exchangers which operate at Peclet numbers much larger than 1000,
the accuracy of the approximation is doubtful.

Numerical results for the plug-flow model have been presented.
Computations were made using the narrow-annular-space approximation as
well as for a nonnarrow annular space. In general, the numerical results
showed that:

1. For a fluid conductivity ratio of the order of unity, the narrow-
annular-space approximation yields overall heat-exchanger results which
are quite accurate for radius ratios as low as 0.5.

2. The fully developed Nusselt numbers are never lower than the
value corresponding to a uniform-wall-temperature boundary condition, but
can be significantly higher than that corresponding to a uniform-heat-flux
boundary condition.

3. The heat transfer characteristics of a countercurrent heat ex-
changer depend upon its operating conditions as specified by the parameters,
H, K, Ky, R, and Z. In some cases, serious inaccuracies can result from
a prior assumption about the boundary condition at the wall separating the
fluids.

4. Neglect of the high heat fluxes occurring in the thermal-entrance
regions of a heat exchanger can, in some cases, result in a serious under-
estimate of the efficiency.

An experimental investigation was conducted to provide experimental
data for comparison with the results of the mathematical analysis. A new
technique, requiring measurement of the temperature distribution of the
outer wall of the heat exchanger, was successfully used to measure fully
developed overall heat transfer coefficients. The technique proved to be
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simpler to use and potentially more accurate than techniques requiring
measurements of fluid or temperature distributions of the inner wall.

The experimental data partially supported the results of the mathe-
matical analysis. The experimentally determined overall Nusselt num-
bers were different from those computed using the traditional analysis.
The magnitude of the difference was not as great as that predicted by the
present analysis, but the trend of the data indicated that large difference
would occur for large tube-side flowrates. The experimentally deter-
mined heat-exchanger efficiencies showed that neglect of the thermal-
entrance regions in short heat exchangers leads to significant errors. For
long heat exchangers, the data indicated that the thermal-entrance region
was of lesser importance.

Heat-exchanger performance has been shown to depend in a very
complicated manner on the parameters H, K, Ky, R, and Z. For turbulent
flow the situation is further complicated by the dependence of the above
parameters on the quantities kf’ and k;r. Because of the complicated nature
of the problem, no simplified formulae have been presented for use in
practical design work. For the design of liquid metal heat exchangers, in
regions where the accuracy of the traditional method is doubtful, the
present analysis may be used with reasonable confidence for predicting
performance of heat exchangers.



CHAPTER VI
RECOMMENDA TIONS

1. Although the present method of computing the expansion co-
efficients yields sufficiently accurate results, the solution of the large sets
of equations necessary for accuracy is laborious and time-consuming. The
investigation of improved methods of computing the expansion coefficients
is, therefore, recommended.

2. Application of the analysis to obtain detailed wall-heat-flux
and fluid-temperature distributions would be of interest, and is suggested
as a possible future contribution.

3. The results presented in this thesis are intended to illustrate
the regions in which the traditional method of design may lead to inaccu-
racies. In a more practical vein, the presentation of detailed design curves
or simplified design formulae, based on the present analysis, would be a
contribution.

4. The application of the analysis to a true turbulent flow with the
appropriate velocity and eddy-diffusivity distribution would constitute a
significant extension of the work presented here. The results of such an
analysis would be valid for all values of the Peclet number and would not
be restricted to liquid metals. The results could also be used as a further
check on the accuracy of the k¥ approximation.

5. The technique used for measuring the fully developed overall
Nusselt number is recommended for use in otfer experimental investi-
gations of heat transfer. The method is applicable for both laminar and
turbulent flow, and can be used for configurations other than the double-
pipe configuration.
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APPENDIX A

Details of Mathematical Analysis

1. Mathematical Basis of the Analysis

The theorem upon which the analysis is based is that regarding the

existence of the negative eigenvalues. This theorem, which is an extension
of the classical Sturmian theory, will be stated now for later reference. A

rigorous mathematical treatment of the following system may be found in
Refs. 62 and 63.

Consider the system:

j_x(k %) +(Mg-p)y = 0; (A.1a)
a'y(a) - ay'(a) = 0; (A.1Db)
(A.1c)

Y'y(b) + yy'(b) = 0,
where k, g, and f are real continuous functions of x in the interval
di=xi=Rh,
and
RSN 0 A cd R0 s el =i 0
aa' =0, witha and a' not both zero;
Y7Yy' =0, with vy and 7' not both zero.

The above system constitutes the familiar Sturm-Liouville system
for which characteristic solutions, called eigenfunctions, exist for a set of
real, discrete, positive characteristic numbers, called eigenvalues, 7\3,
)\f, )\2, ..., which have no limit point except A* = +w. If the eigenfunctions
are denoted as yy, y;, Y25 ..., corresponding to the index of their corre-
sponding eigenvalue, then y,, has exactly m zeros in the interval

< X< D,

If, on the other hand, the function g changes sign in the interval
a < x < b and all other conditions remain the same, then the preceding re-
sult has to be modified as follows.

For the case that g changes sign in the interval a < x < b, there
exists an infinite set of real eigenvalues that has the limit points +» and
-, If the positive and negative eigenvalues are arranged each in order of



increasing absolute value, and are denoted by
A AL A A o5
e e L SR
and the corresponding eigenfunctions by
Y+or Y410 Y420 -0 Y4mo «-o5
Yapi Yogs Yozs soer Yoo soss
then y, ., and y_,, have exactly m zeros in the interval a < x < b.
For the special case that £ =0, a' = ' = 0, and g changes sign

in the interval a < x < b, Bocher® has shown that the values of Xz.o or )\fo
depend on the integral of the function g:

b
f gaxic 0y a8 i0: - A%, £ 0; (A.2a)
a
b
f by e e ST R LR A (A.2b)
a
b
f g = iR e R = 0, » (A.2¢)
a

Note that g is the "weight" function for the orthogonal relationship

- d =0 m ;( n
8Ym¥n®* /o m =n (A.2d)
a

2. Separation of Variables

The temperature distribution of the heat-exchanger fluids is ob-
tained from the solution of the nondimensional governing equations:

Tube:

St ox z

X a_[f,(x,) X, ——ae‘(x"z)] § miag 2bsmen) (A.3a)
8x1 8

75
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Annulus:
1 d Q€ ,(x,, 2) 2 O€2(xz, 2)
Sl + g) ———| = -gi(x;) 0 ———- (A.3b)
xpt0 . l}Z(XZ)(xz o) sz gz( 2) =
The above equations are subject to the following boundary
conditions:
Entrance:
e bo0)i=n0; (A.3¢c)
Ea(x2,2) = 1; (A.3d)
Interior:
9€&,(0,
OEuitun) 0; (A.3e)
i
)
K e_,l(l,z) agz(o,z); (A,3f)
0%, ox,
0€1(1,2)
w et Gal1ie) = €5(0.2); (A.3g)
) 1.2
M = 0, (A.3n)
PR
Separation of the variables in the form
£1(x3.2) = Eilx;) 6(2) (A.4)
when applied to the preceding equations results in the following:
Tube:
1 d6(z) _ 1 d dE,(xy) |
6(z) “dz  gi(x) Ei(xy) x dxg [fl(xl) R )
Annulus:

ﬁdi(:) A -1 LExz*‘G)fZ(xZ)dEZ—(XZ)J‘ (A.5b)

g2(%;) WPE,(x,)(x, + 0) %2 dx,



97

The left-hand sides of the above equations are functions of z only,
whereas the right-hand sides are functions of x only; consequently, they
can be equal only if they each equal a constant, - ).

Equations (A.5a) and (A.5b) may be separated as follows:

1 dele)
e~ Y (A.6)

which has the solution

6(z) = e-xzz. (A.7)

The right-hand sides of Eqs. (A.5a) and (A.5b) may be written

dE,(
d_ill:fl(xx) x) dl_,:l):l + Mgi(x1) X E (%) = 0; (A.8a)
dE
dixz[fz(xz)(xz"' o) %:Z):I . )»zwzgz(xz)(xz+ 0) Ex(x;) = Q. (A.8b)

The interior boundary conditions become

—- ik (A.8¢c)
B »
di;(ll) _ dii(:))‘ i
w d—};:;;% + Ei(1) = Ex(0); (A.8e)
%ﬁl) =il (A.81)

3. Two-region Sturm-Liouville Problem

a. Application of Theory to Present System

Equations (A.8a) and (A.8b) correspond to what may be called
a two-region Sturm-Liouville problem and may be written as a single dif-
ferential equation:
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d ( dy 2 !
1 e =0 D=x=2 (A.92)
dx(k dx) rgy

yi(0) =07 yUz)=0, (A.9b)
where x = 0 and x = 2 correspond to x; = 0 and x, = 1, respectively.

The functions y, k, and g are defined over both regions, tube
and annulus, of the heat exchanger by

Tube: (G =i 0=t =01 ]
y = Ei(x1); (A.10a)
k = xf)(x); (A.10b)
g = xig1(x); (A.10c)
Annulus: (x=x+1; 0 =x, = 1)
y = Ea(x); (A.11a)
k = (5 +0) f(x); (A.11b)
= -w?(x, + 0) galxz), (A.11c)

where the function y must meet the compatibility conditions at the inner
wall of the heat exchanger, Eqs. (A.8d) and (A.8e), and the functions k and
g have finite discontinuities at the inner wall of the heat exchanger.

Equation (A.9a) is of the same type as that considered in
Section 1 of this appendix. Specifically, if £ = 0 and a' = y' = 0 in
Eq. (A.la), then they are identical for the case treated by Bocher®? in which
the weighting function, g, changes sign in the interval a < x < b. The dif-
ficulty in applying the theorem tothe present system lies in the factthat the
theorem specifies that the functions k and g be continuous in the interval
a < x < b, whereas these functions have finite discontinuities at the inner
wall in the system being considered. Because of the fact that the functions
are continuous in their respective regions, i.e., piecewise continuous,
Stein® has been able to show that the theorem applies to the present system.

According to the theorem, then, there is an infinite set of
eigenvalues, having the limit points +w and -w, for which solutions to
Eq. (A.9a) exist. Their corresponding eigenfunctions, Y-m and y.., have
exactly m zeros in the interval a < x < b.



b. Orthogonality of the Eigenfunctions

According to the theorem, Eqs. (A.8a) and (A.8b) represent a
two-region Sturm-Liouville system for which infinite sets of positive and
negative eigenvalues exist. The equations may be written in the form

d dEl,n(xl) 2

= £1(%;) % : o + Alxigi(x1) Eyn(x) = 0; (A.12a)

d dE 5 (x;)

d_le}z(xz)(xﬁG) 37“2 a7 >»fﬁl)zgz(xz)(xzt‘) Ez,n(xz) = 0, (A.12b)
Boundary Conditions:

dE;,n(0)

_dx__l = 0; (A.12¢)

dE 1 dE 0
« SEun(l)  dE, n(0).

&, ax, (A.124)
dE;,n(1)
w e T Enn(l) = Ez,n(0); (A.12e)
i
dE;,n(1)
oy =" U 5 (A.121)

Bty 1, 2, 35 0
where Ej , is the eigenfunction corresponding to Kf\.

The orthogonal property of the eigenfunctions may be derived
in the following way. Equation (A.12a) is first multiplied by E, m to obtain
a relation containing different ordered eigenfunctions. A second relation
is obtained by interchanging m and n in the first relation. The two ex-
pressions are then integrated between 0 and 1, subtracted, and simplified
to yield Eq. (A.13) below. A similar treatment of Eq. (A.12b) yields

Eq. (A.14):

dE;,m(1) dE,,n(1)
(K; - A%4) Bi{E;,n(x1) Ey,m(x)} = ZEl,n(l)[—% - E;,m(1) %] ;

(A.13)
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dE n(0) dE, (0)
()\f]- Xin) HBz{Ez,n(xz) Ez,m(xz)} = [Ez,m(o) — Ez,n(o) —Z 5

dx, dx;

= |

(A.14)
n = *0, £1, *2, ... .

The above equations may be combined by applying the inner-
wall boundary condition to yield

(A2 - A2 )[Bi{E1,n(x1) E1,m(x1)} - HB2{Ez n(x2) Ez,m(xz)}] = 0; (A.15)
W20, %1, 82, ... .

This gives the desired orthogonality condition:

By {E1 n(x1) E;,m(x1)} - HB{E;,n(xz) Ez;,m(x2)} = 0; n # m;
(A.16)

Bi[E1 n(x1)]? - HB,[Ezn(x2)? = Np;  n (A.17)

8

m = 05l 2Rt

Recalling the definition of the bulk average operation [see
Egs. (3.22a) and (3.22b)], it is easily verified that the eigenfunctions are
orthogonal with respect to the weight function g, where g is defined for
both regions of the heat exchanger by

g = xg1(x); (A.18a)
Annulus:
H
g = - T3 25 xet0) galxe). (A.18b)

An alternative form for the normalizing factor N, may be ob-
tained by multiplying Eqgs. (A.12a) and (A.12b) by E;,n and E, n, respectively,
and integrating the resulting expressions between 0 and 1. These expres-
sions contain the quantities Bj{[Ej (xi)]’} and are used in Eq. (A.17) to
obtain an integral expression for N,. This resulting integral expression is
integrated by parts to yield



2
1 dE, n(x;)
2 ) 1,n\"*1
XnNn = 2‘/(: x,fl(xl)[——dxl ] dx1

2
1 dE; n(x;)
t= [ (x+0) f:(xz)[i—z- dx,
dXZ

oK
0
2
dE, (1)
+ ZKW[T . (A.19)

The sign of N, may be determined from the above expression.
Since the right-hand side is always positive, X;Nn must always be greater

than zero.
Therefore, for
ng 0: N, <0 since X;( 0;

B> 0 N2> 0 since)\;>0.

c. Zeroth-order Eigenvalues

According to the theorem of Bocher,% the zeroth-order eigen-
values have values which depend on the sign of the integral of the weighting

function g.
.

For the two-region problem, the weighting function is defined
over both tube and annulus, and

b
f gdx
a

corresponds to

1 H 1
f x;g1(x) dx; - l_+2—cf (xz + 0) ga(xz) dx,.
0 ()

Writing the above in terms of the bulk operator B;{ } gives

o 1 H u 1
f gdx = E’Bl{l} -?Bz{l}; f gdx = Z-(I-H) (A.20)
a a

since B;{1} = 1.
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Therefore, for

sl
b
)x_z'_o = 0] sincef gdx > 0; (A.21a)
a
Hy>1
b
A, =0 sincef gdx < 0; (A.21b)
a
H=l
) b
A, = A =0 sinc«f gdx = 0. (A.21c)
a
For H = 1, two zero eigenvalues exist, corresponding to a "double root"

of the eigenvalue equation. This case requires special treatment and has
been excluded from the analysis. As mentioned in the literature survey,
Stein®® has presented a solution for the case H = 1.

For H ;! 1 only one zero eigenvalue exists, and it belongs to
the positive set of eigenvalues for H < 1 and to the negative set for H > 1.

For convenience, let the eigenvalues be denoted
2 2 2 2 B 2 2
R R Ve e Vet Nr ) Ui e 2 7 L
where )\é = 0 for both H greater than and less than unity.
Note that for H < 1 the A* above corresponds to the previous
)\io and for H > 1 )\,g above corresponds to the previous A%,. The cor-
responding eigenfunctions are denoted
v By om0 By Lo Ey o1 Ej s B gy oo By 40 By 4 oo -
The above notation is more convenient for the purposes of the
present analysis than that used in the previous part of this appendix, and

is used exclusively in the remainder of this appendix and in the main body
of the thesis. w
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d. Eigenfunctions
The solution of Eqs. (A.12a) and (A.12b) for Xg = 0 are
E;,0 = E;,0 = constant. No generality is lost by assuming that this con-
stant is unity:

Ej = Ezp = 1. (A.22a)

Note that with E; , = E;o = 1 the zeroth-order normalizing factor as
given by Eq. (A.17) is

No = 1 - H. (A.22b)

Solution of Eqs. (A.12a) and (A.12b) for n ;( 0 is best effected
by defining auxiliary functions F(x;,A) and G(x;,1). Let

Ey,n(x) = A;,F(xhln): (A.23a)
E;,n(x2) = BpG(xz,Ap); (A.23b)
RS- S0, ...h

where F(x;,A) and G(x;,)\) satisfy

dF(x;,A
?i‘l[fl(xl) X) —%IT—)] + A%x81(%)) F(x,2) = 0 (A.24a)
and e
dG(x;, A
fg[fz“z)("z”) —(d’:;_)] - Mw?g,(x,)(xz + 0) G(xz,2) = 0. (A.24b)

Initial Conditions:

dF(0,)) _ .  d4G(LA) _

; 0;
dx1 de

BlOA) =1 - Gll.A) =" 1.

The constants A;, and B;, are defined such that they satisfy the
first inner-wall boundary condition, Eq. (A.12d):

(A.25a)

 4Ern(1) _ 4By n(0).
dx; - dx, v
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ot B | o 9GH0Ae) (A.25b)
n dx; h dx,

Therefore, let

Ax'1 = M (A.26a)
dx,
' o g DL (A.26b)
n dxl

o I o A i AP

e. Eigenvalue Equation

The eigenvalues are determined by the second inner-wall
boundary condition, Eq. (A.12e):

dG(0,X,) dF(1,xy) dG(0,xp) dF(1,) )
= K—= G(0,1,);
Kw dx, dx,; . dx, F(1,An) K dx; G( n)

Gt = Al Benda T e 3

The eigenvalue equation, ¥ (A), is defined as

_ dG(0,A) dF(1,)) . dG(0,1) dE(1;X)
Y(X) = Ky s iy w5 dxg F(1,2) - Kd_le(O.X),
(A.27)

and the eigenvalues X; are obtained from the roots of the equation
POX)==N0 (A.28)
with
N0

0

4. Expansion Coefficient

The general solution of Eqgs. (A.3a) and (A.3b) is the sum of all

particular solutions. The expressions for the temperature distribution of
the heat exchanger fluids are



& -Aiz (A.2
el(xlrz) e Z CnEl,n(xl) e o . 9a)
n=-0
and
< .- (A.29b)
€2(xz,2) = Z CnE;z n(x;) e n?, g
n=-o0

Relations defining the expansion coefficients, Cp, are obtained from
the entrance and exit temperature profiles of the heat exchanger fluids:

z = 0:
E1(x1,0) = 0; (A.30a)
£,(x2,0) = pa(x;)  (unknown); (A.30b)
5= Z:
€,(x1,2) = pi(xy) (unknown); (A.30¢)
€2(x2,2) = 1. (A.304)

The end temperature distributions may be written in terms of the
series solution:

z = 0:
+ 00
0= CpE1,n(x1); (A.31a)
n=-0
00
pa(xz) = 2 CnE;,n(x2); (A.31Db)
n=-o
g = Z:
o 2
o el A
pi(xy) = i CoEiniz) e ™% ; (A.31c)
n=-00
+o0 i
1= ) C.Esalx) e 02, (A.31d)

'
8
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Manipulation of the above equations yields expressions for the ex-
pansion coefficients. For example, Eqs. (A.31a) and (A.31b) are multiplied
by E,,n and HE; p, respectively, and the bulk average operation B } is
applied to the result. The expressions are then subtracted and the orthog-
onality condition, Eqs. (A.16) and (A.17), applied to give Eq. (A.32a) below.
A similar treatment of Eqs. (A.31c) and (A.31d) yields Eq. (A.32b).

CpNy = -HB;{ps(xz) Ez n(x2)} (A.32a)

2
CnNpe Auf B {p1(*1) E1,n(x;)} - HB,{E; n(x;)}. (A.32b)

The above expressions cannot be used directly to calculate the ex-
pansion coefficients since they contain the unknown outlet temperature dis-
tributions, p;(x) and p,(x). The unknown functions may be eliminated from
Egs. (A.32a) and (A.32b), however, by expressing the functions in terms of
their series solution and substituting this series into the equations. After
the substitution, Eqs. (A.32a) and (A.32b) are added to give

4 2 +o0 7
CnNn<1+e an> = Z Ck[e Mkt B1{E1,n(*1) E; k(x1)}
k=~
- HB, {E; (%) Ez,k(xz)}] - HB,{E; n(x;)};
(A.33)

7 S e ] g

For n ;! 0, the term for k = 0 drops out of the above summation
and C, does not appear in the expression. An explicit relation for C, in
terms of higher-ordered expansion coefficients may be obtained for n = 0.

For n = 0 Eq. (A.33) becomes
+ 00

s B
CoNo = ). Ck(e Mz 1) Bi{E; k(x)} - H. (A.34)
k=-o

A fairly straightforward manipulation of Eq. (A.33) yields the following
simplified form:

& _NEz
Z ck<1 ea VK )Qn,k = Bi{E, n(x1)}. (A.35a)
k=-o

where

Qnk = “Bi{E; n(x) By x(x)}i  k # n; (A.35b)
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o MnZ
a3 Bl{[El,n(xl)]z} + = N,
(l—e-)\“z)

G e A . . PR

The zeroth-order expansion coefficient does not appear in the above
equation and must be calculated by Eq. (A.34).

The expansion coefficients must be calculated from the infinite set
of linear algebraic equations defined by Eq. (A.35a). Computation is done
by truncating higher-ordered terms and equations, and solving the remain-
ing finite set. Convergence of the solution must be judged by inspection of
the results as more terms are added, since no usable convergence test for
this type of system is known. The accuracy and convergence of the compu-
tational procedure is discussed in the main body of this thesis.

5. Normalized Eigenfunctions

At this point, it becomes desirable from a practical viewpoint to
normalize the eigenfunctions with the square root of the absolute value of
N,,, the normalizing factor. The absolute value is used because of the fact
that N, is negative for n < 0. This normalization is desirable for com-
putational considerations, since it was found that unnormalized eigenfunc-
tions become unmanageably large as their order is increased.

Let

Ez,n(xz)
E, nlx;) ~ —‘\/::
Na|
T T R S
Throughout the remainder of this appendix and in the main body of
this thesis, all eigenfunctions are normalized with the exception of the
zeroth-order eigenfunctions, which remain
Eyo = Ezo =1

Using normalized eigenfunctions, the orthogonality condition becomes

B1{E1,n(x1) Ey,m(x))} - HB,{E;,n(x;) E;,m(x2)} = 0; =n # m;
(A.36a)
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Bi{[E1n(a)]?) - HB{[Exn()]®} = 1220, n=m.  (a36D)

The relationships which were derived in the preceding sections of
this appendix also apply to normalized eigenfunctions if the value of N is
taken to be +1 for n > 0 and -1 for n < 0, and Ny remains the same.

6. Definitions to Avoid Use of Negative Indices

The necessity of summing a series with exponentially increasing
. e sqs . v
terms can be eliminated by defining an auxiliary eigenvalue, Bp. Let

2 2
AT (A.37)

The eigenfunctions associated with negative eigenvalues may also
be redefined with positive indices:

E;,-n(x) = El,n(xl); (A.38a)

E;,-n(x2) = E; n(x;). (A.38b)

The expansion coefficients associated with the negative eigenvalues
may be redefined in terms of an auxiliary expansion coefficient, Ay

n™ oA . (A.39)

The above definitions serve the dual purpose of eliminating negative
indices and ensuring that the exponential terms in the series solution
"decay" for large arguments.

In terms of the above redefined eigenvalues, eigenfunctions, and
expansion coefficients, the temperature distributions of the heat-exchanger
fluids are given by Egs. (3.8a) and (3.8b), where the zeroth-order term has
been separated from the summation which is now from one to +®. In
Eqgs. (3.8) to (3.19) the terms associated with negative eigenvalues have
been separated from those with positive eigenvalues so that the set of func-
tions defining E; , and 5?1 is separate from the set defining Ej n and >\121~
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APPENDIX B

Reduction of Data

The tabulated data for each experimental run were the flowmeter
emfs, the cooling water manometer differential, and the thermocouple
emfs. In the early stages of the experimental program, the voltage supplied
to the heaters was also recorded for the purpose of making a heat balance
across the heaters. This practice was abandoned because the voltmeters
proved to be too inaccurate for anything more than a general indication of
the power level.

The first step in the reduction of the data was the conversion of the
tabulated data to physically meaningful quantities by means of flowmeter -
calibration curves and standard thermocouple conversion tables. The
basic data obtained were denoted as follows:

Flowrates (lbLhr)

w, - tube-side mercury flowrate
W, - annulus-side mercury flowrate

WHZO - cooling-water flowrate

Bulk Temperatures (°F)

TA, - test-section tube inlet
TA, - test-section tube outlet
TA, - test-section annulus inlet
TA, - test-section annulus outlet

TA, - heater inlet

TAg - heater outlet
TA, - cooler mercury inlet
TAg - cooler mercury outlet

TA, - cooler water inlet

TA,;, =~ cooler water outlet

Measurements of the temperature of the outer wall were made with
both 47- and IO-L/Dl test sections, but since the 10-L/D, test section had
no fully developed region, only the temperature measurements for the
47-L/Dl test section were useful for computing Nujgpp. The data for the
outer wall temperature for the 47-L/Dl test section were denoted as
follows:



110

Outer Wall Temperatures (°F) of the
47-1/D, Test Section

Distance from Tube

Thermocouple Inlet, £ (in.)
T 0
B L/30 = 1.18
TR 29(L/30) = 34.32
TE3; L = 35.5

1. Operating Conditions for the Test Section

Quantities defining the operating conditions of the test section for
each experimental run were calculated in the following manner:

c,W W
272 2
= = 1.005 —;
H oW, W,
24 c,

= = 0,127 5

Pe, = W, W,
24 c,

Pe, = W, = 0.041 W,

Tky(T 52 +721)
AT, = TA, - TA,.

The physical properties used in the computations were taken from
Ref. 65. Because of the relatively small temperature range obtained in the
experiments, the mercury properties used were taken to be average values
appropriate to an average temperature of 150°F for the tube side and 130°F
for the annulus side. The values used were:

Tube* Annulus
k, = 5.27 Btu/hr-ft-°F k, = 5.20 Btu/hr -ft-°F
c, = 0.0329 Btu/1b-°F ¢, = 0.0331 Btu/1b-°F
Pr, = 0.0205 Pr, = 0.0215

For the temperature range of the experiment, the maximum deviation of
the properties in Ref. 65 from the above average values was less than +3%

for k;, +1% for c;, and +5% for Pr;.

*Thermal conductivity of copper tube: ky = 228 Btu/hr-ft-OF.



2. Heat Balance for Water Cooler

The heat flux computed from the water-cooler data was given by

QCHZO = CHZOWHZO(TAW-TA"); °H,0 = 1.0;

QCHg = c;W,(TA; - TAy).

The heat-balance deviation for the water cooler was calculated from
QCHZO

6. = 100 l:l - QCHg] (%).

3. Heat Balance for Test Section

The heat flux computed from the test-section data was given by

Q, c,W,(TA, - TA,);

Q, c,W,(TA, - TA,);

The heat-balance deviation for the test section was calculated from

b= 1001
H = 100 )-E (%).

4. Efficiency of the Heat Exchanger

The heat flux for a heat exchanger of infinite length was computed
by the relations in Section III.A.6.c.

e

Qmax = CZWZATO'

o> 1:

Qmax = ¢;W,AT,.
The efficiencies computed from the tube and annulus data were

& = B8 e = Q,/0,,,,



The actual efficiency was taken to be the average of these values
€ = 1(e,+er).

5. Fully Developed Overall Nusselt Number

The outer-wall temperatures were expressed in the form:

TH, » TA
i 1 l-¢
% ‘2“[ 8T, 'HH-l]'

e TB; - TA,
i IEO ST

The above values were plotted against z;, where

4 4 by
M 5'333Pe,'

Z; being the location of the thermocouple on the test section.

The S; vs. z; plots were linear in regions where the heat transfer
was fully developed. An example of the Sj vs. zj plot is given in Fig. 4.6.
The extent of the linear region was determined by inspection, and the
standard least-squares method was used to fit a straight line to these
points. The slope of the line was then used to compute the fully developed
overall Nusselt number by

x |slope

|_H
Nujpp = II_H

A simple FORTRAN program was written to perform the actual
computations involved in the reduction of the data. The program reduced
the data in two stages. In the first, the outer-wall temperature plot was
obtained. The extent of the linear portion was then determined by inspection
and used as input for the second stage, which reduced the bulk of the data
according to the procedure just described. Inputs to the program were the
mercury and water flowrates and the thermocouple emfs. The program
converted the thermocouple emfs to temperatures and then proceeded to
reduce the data. .
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APPENDIX C

Tabulation of Experimental Data

The basic experimental data taken with the 47- and lO-L/Dl test
sections are tabulated in Tables C-1, C-2, and C-3. The data are denoted
as in Appendix B with the weight flowrates in lb/hr and the temperatures

in °F. It has been stated previously that the data taken in the first 42 runs
with the 47-L/D, test section were discarded.



TABLE C-1. Basic Experimental Data for 47-L/Dl Test Section
RUN Wl W2 WHZO TAl 'I'A2 TA3 TA[0 TA5 TA6 TA7 ’I‘A8 TA9 TAlO
43 225 E 48705 - 1490105 G 6L Ea UMV 09568 SL2B BE TS 70D =157 58t C1167.4. 051 19V ANEST (8RB Bl
44 3060 4860 . 1500, 159,00 119,48 109,7 15450 ~167.4 - 160,00 16754 109,7 5i,4 57,8
45 SB4N - 48707 1490 ~1hBV /285 04N 0, A 48658 16058 E159y7 c81 6531 09, B b1 o s s
46 4580 486D~ 1510, -5 159yB 212559 1 08,6 S139/65 S1AE 3 60511654 108 b1 G 7]
47 6149 —aB80; 1440, 5 1612 132,9511055 145,00 " 165,2 = 164,7 9 165,2 110,551 8 58N
48 76735 4874 91445 - 162,60 S13T7 111,25 148 B 65,00 16X S0 165,59 41179 54, 9EEERT
49 9210.% 4870, 1458, 162,4 140,2 109,1 " 150,4 165,0 162.7 165,0 109.1 58 nRScRTD
éO 10800. 4880, 1465, 162.3 142,2 108.4 151,5 164,7 162,6 164,7 108,4 51.7 57,9
51 B25. 4860, 1462, 138.6 109.2 109.0 113,9 164,8 141.6 164.8 109,0 51,6 57,8
52 1465, ~ 4860, 1457, 147.0 111.0 110,1 119,0 167,1 149,5 -167;1 11051 S51 I8 0cqTh
53 1520, 4860, 1470, 15244 4142.7 112.0 123,6 168,0 154,3 168,0 112.,0 B1,295755
54 1521, 7350, 1409, 14047 -116,9 116,7 121,2  153.9 142,353 153,9 1167 ¥ 52, cgE
55 2280, 7450, 1461, 14545 “148,4 116,11 124,2 - 15474  146,8 15454 11611 WSl oREE
56 S020, 7540, 1475, 1483  120,7 115.8 126,9 154.1 149.0 154;1 1158 517 EaT
57 3745, 7550. 1460, 130.2 123,6 116.2 129,8 155,2 150,9 155.2 116,2 53,5 60,1

{40!



TABLE C-1 (Contd.)

TA

TA,

TA

TA

TA

TA

TA

TA

TA,

TA

Ry Ny e ) 1 2 3 4 5 6 7 8 9 10
58  4k20. 7340, 1465, 151.0 125.9 116,3 131,8 155,7 151.5 155.7 116.3 52.8 55.4
59 6160, 7335, 1470, 149,9 127,9 115,0 133.0 153,3 150.3 153.3 115,0 52.4 58,9
60 7670. 7300, 1468, 151.8 131.7 115.9 136,4 154.5 152,2 154.5 115,9 52,8 55.4
61 9210. 7340, 1475, 153.1 134.9 116,5 138,9 155,4 153.4 155.4 116,5 52.5 59.1
62 10730, 7350, 1475, 151.3 135.3 116,0 138,7 153.1 151.5 153.1 116.,0 52.2 58,5
63 777. 2400. 1405, 161.2 93,6 93.4 114.2 200.1 166.5 200.1 93.4 53.9 60,3
64 1130, 2410. 1460, 177.0 96,2 94,6 130,9 202,8 181.,0 202,8 94.6 53.4 59,7
65  1530. 2430, 1420, 178.6 101.6 96,2 141,9 199.3 181.1 199.3 96,2 55.6 61.7
66 2260, 2570, 1420, 180.4 112.0 95.4 154,3 194,7 182,3 194.7 95,4 55.5 61,6
67  3100. 2530. 1420, 183.9 125.1 94,9 165.0 194.3 185.2 194.3 94,9 55.3 61,2
48 3845. 2420, 1410, 180.9 130.9 90,6 167.4 188.9 182.1 188,9 90,6 53.9 59,5
69  4625. 2420, 1420, 183.8 139.4 91,6 173,1 190.5 184.7 190.5 91,6 54,1 55,8
70 e160. 2520, 1415, 179.9 144.9 90,7 172,0 185,0 180.6 185.0 90,7 51.6 57.4
54 7720. 2520. 1420, 180.1 151.0 89,7 174.1 1B4,2 180.7 184.2 89,7 51.0 56.7
72 9250. 2500, 1420, 182.4 158.3 91,3 176.2 185.6 182.8 185.6 91.3 54.9 60,5

STI



TABLE C-1 (Contd.)

RUN

TA

TA

TA5

TA6

TA

TA,

TA

L 2 H20 i 2 3 4 7 8 9 10
7808006 - 2480 0 14200 1785 ABRCH 00 BRA7E 0" 181 .2 178,80 181,2 “80,8% 24,5 5976
74 - 5= P -1 R 7 L A B T @75 605 1460 P25, 9= 1 R8LE6 1225y9 TH6 DR Ha L4 S EH S
75 1605, 1210, 1445, 20000112715 86,4 194,14 223,86 20354 - 22367 86,4 0 544 5857
76 2360, 1220. 1410, 207+1 136.8 69,0 201,3 224,33 209,11 224.3 69,0 548 58,5
27 SANbe . 12200 18100 = 207w 1B RR0 AT ONEROE SRR 42.5 221,0 69,9 54,3 58,7
78 4710 12005 ,14055 21200 L7460 68090 2087 2207 2183 22057 08,9 SA R ER G
79 7200 2220, “14159 2124 189,11 6955 2009 217,8 213,00 217:8 69,5 - SayN 5848
80. B140, 125p, 1405, 210«0 181,49 67,5 207,33 216.5 210.9 216:5 bB7:5 52,8574
81 9100, 1220, 1410, 214.9 195.,0 6B.4 212,2 219.,2 215.4 219,2 68,4 52,5 52,0
B2 duas5n;-- 1180, 1415, 216,94 199,49 69,4 213,7 220,11 216,8 2201 69,4 S4.n0 585

LT



TABLE C-2. Outer-wall Temperature Data for 47-L/Dl Test Section

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

TB31

129,4
124,8
123,7
122.3
121,8
121,0
119,9
119.,3
118.4
117,77
117.0
116.2
115.6
115.0
114.,4
114,1
113,6
113.2
112.7
212.%
111.8
111.4
111.0
110.8
110.4
110.2
109.9
109,8
109.6
109.4
109.2

134,7
130.2
129.1
127.6
127.0
126.,0
124,8
124,2
123.2
122,3
121.4
120.3
119.5
118.,7
117.8
117.2
116.4
1397
115.0
114,3
113.7
113.1
112.3
111.8
111.4
110.9
110.5
110.3
109.9
109,.5
109.1

137.6
133.,4
132,98
130.8
130.3
129.4
128.,1
127.3
126,3
125.4
124.3
183,82
122,2
121.3
120,3
119.7
118.8
118,0
3137.%
116,3
115,5
114,7
113.8
113.2
112.,4
111.9
111,3
110.9
110,3
109.9
109,2

140.4
136.3
135.14
133.7
133.4
132.1
130.8
130.2
129.0
127.9
126.8
125.5
124.4
123.4
122.3
121.6
120.6
119.6
118.5
117.5
116.5
115.4
114.4
113.7
112.7
111.8
111.1
110.4
109.7
109.1
108.2

145,8
142,4
141,4
139,9
139,4
134,5
137,2
136,6
135,4
134,3
133,3
132,0
130,9
129,09
128,5
19357
126,5
125,3
123,9
122,7
191 .3
120,0
118,7
12925
116,93
115,1
114,2
113,3
112.2
131,82
109,9

149,6
146,6
145,6
144,2
143,9
142,9
141,7
141,0
139,8
138,7
137,6
136,3
135,1
134,0
132,6
131,7
130,4
129,1
127,6
126,1
174,6
123,1
121,4
119,9
118,5
117,1
115,7
114,7
113,4
112,0
110,3

151,1
148,4
147 ,4
146,1
145,8
1449
143,56
143,1
141,9
140,9
139.8
138,3
137,1
135,9
134.,4
133,86
132,3
131,0
129,4
127.9
126,2
124,4
122,5
120.9
119,1
117,4
115,9
114,5
112,8
111.1
109.,0

152,4
150,0
149,1
147,7
147,5
146,7
145,5
144,9
143,8
142,8
141,7
140,3
139,1
137.9
136,4
135,5
134,3
132,8
131,2
129,4
127,7
125,9
124,0
122,2
120,4
118,5
116,7
115,1
113,1
111,1
108,5

114,0
111,4
110,8
110,5
110,2
109,9
109,7
109,7
109,5
109,5
109, 4
109,3
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1
109,1

119,2
115.8
11540
114.,4
113.9
113.,4
112.8
11246
11242
111.9
111.7
111.4
111.2
113:2
110.9
11049
110.9
110.9
110.9
110.,5
11049
110.9
11049
110.9
110.9
110.9
11049
11049
110.9
110.9
110+9

124,2
120.1
119,1
118,4
117.7
117,1
116,2
115,9
115,2
114,8
114,3
113,8
113,4
113,1
112,8
112,7
112,5
112‘3
112,2
112,0
111,8
111,7
111,5
111.,4
111,3
111.3
111.3
111,3
111,3
111,3
111.3

121,6
119.,4
119.,0
118,7
118,4
118,2
117.9
117.7
117.,5
117,3
117.1
116,8
11646
116.,6
116.5
116,5
116.4
116,3
116,3
116,2
116,1
116.,0
116,40
11640
116,40
11640
116,0
116,40
116,0
11640
116,0

124,8
121,9
121,3
120,9
120,5
120,1
119,5
119,3
118,9
118,6
118,2
117,8
117,5
117,2
117,0
116,9
116,8
116,6
116,5
116,3
116,1
115,9
115,8
115,7
115,7
115,7
115,7
115,7
115,7
115,7
115,7

127,46
124,4
123,7
123,1
122,6
122,14
121.4
121.14
120,5
120.1
119.7
119.1
118,6
118,2
117,9
117.7
117.4
117.14
116,9
116,5
116,3
116.1
115,9
115.7

115,85

115.4

115.4

115,3

115,2

115.1

114.9

130.8
127,5
126,8
125,9
125,7
125,1
124,4
124,1
123,4
122,9
122,4
121,7
121,2
120,8
120,3
120,0
119,7
119,3
116,9
118,5
118,0
117,7
117,4
117,1
117,0
116,8
116,5
116,5
116,3
116,2
115,9

LI1



TABLE C-2 (Contd.)

RUN 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
TB, 132.8 134,1 137,5 140.0 139,8 114,8 131,.3 142,4 154,5 1652 167,7 173:5 172,4 174.6 178,6
TB, 129.7 131.0 134,6 137.1 137,2 106,0 122,0 138,9 148,8 160.7 164.4 170.8 170,5 173.2 177,6
TB; 128.9 130.3 133.8 136.5 136,6 103.,3 118,9 132,2 146,6 158.8 162.7 169,4 169,4 172.3 176,9
« 327.,9 129.8 132.8 135.,4-139,6 100.0°115.8 129,4 144, 1 1856¢2" 160.7 167,40 167.7 170.8.175.48
127.7-129.2 132,5 135:3 138,95 99,6 113,6 127,6 142,7 155,11 '159,8°166,8 167.4- 470,7 175,56
127.1 178.5 131,9 134.8 134,9 98,4 111.3 125,3 140,7 15343 158,2 165.4 166,3 169.8 175,0
125,4 127.7 134,1 133.7 134,0- 97,4 109,1 122.7 138,5 151,2 156.2 163.6 164,8 188,5 173,%
126.0 127.2 130,7 133.4 133,7 96,7 107,5 120,8 136,8 149,6 154,9 162,6 164,0 167.9 173,5
126.4 126.5 129,99 132.5 132,8 196,1 105.9 118,72 134,99 1476 153.1 16048 '162.5 156,8 1724
124,88 125.9:129.2 41318 132,11 95,7 404.6-146,8 133,0 14547 151,33 159,2 161.1 165.4 171:3
124.2 .125,2 128.5 131,10 133,49 /9542 103,94 115:0:-131,211489,7 149,49 15715 159.6 $44.1 170:&
123.4 124,53 127,55 13041 1304 794,8:102.2 143,2.129,0:140:4 147,2455,2 157,27 162.5 1687
122,8 123.7 126.8 129.3 129,6 94,6 101.3 111,7 127,0 139:,4 144.4 152,8 155,8 180.7 1861:3
- 122.3 123.0 126,0 128.5 128,7 94.4 100,5 110,2 124,9 1373 143,0 151,1 154,0 159.0 165,9
s 121.7 1922.,2 125.1 127.9 127,8 94,2 99,7 108,8 122,8 135:1 140,7 148;7 151.9 157:0 184.1
s 121.4 121.9 124,686 126.9 127,2 94,1 99.1 107,7 121,1 133:3 138.7 146:8 150,2155.5 162,77
«  120.9 121.2 123.9 126.0 126,4 94,0 98.5 106,5 119,1 130:9 136.3 144,4 147,.8 153,2 1560.6
« 120.4 120.6 123.1 125.2 125.,5 93,8 97.9 105,3 117.1 128,5 133.7 141:6.145.2 150:7 158,53
. 120.0 120.0 122,3 124.2 124,7 93,8 97.4 104,2 115,0 125.9 131,0 138.8 142,4 148,0 155,7
« 119.5 119.4 121.,5 123.4 123,8 93,7 97,0 10B,1 113,0 1233 128,0 135,6 139,3 144.8 152,27
- 119.1 118.7 120,.8 122.6 122,7 93,6 96,6 102,1 111,0 120.5 124.,8 132,2 136.,0 141.4 145.4¢
- 118.6 118.1 120.0 121.7 121,8 93,6 96,2 101,1 109,0 117,6 121,3 128,5 132,1 137,5 145,5
- 118.2 117.7 119,4 121.0 124,0 93,5 95,9 100,2 107,0 114.7 117.7 124,5 128,2 133,4 141,4
« ~417.9 117.2 118,8 120.4 120,2 93,5 95.6 99,5 105,2 112+1 114,2 120:6 124,0 129:1 13721
. 117.5 116.7 118,2 119.4 119,44 93,5 95,4 98,8 103,5 109+3 111.0 116,5 119.4 124,1 132,0
s 347.4 116.3 117.7 118.9 118,868 93,4 "95,1 98,2 101,9 10846 107,55 112:8 114.9 1191 1285
» 117.0 115.9 117.3 118.2 118,1 93,4 . 95,0 97,6 100,4 1041 1n4,2 108,:3 110.2 114:91 120,37
o A05.0 115.7 118,8 117.9 1177 193.4-194.;8 "92,1 99,2 40149 -101,1 108,88 1050300 IH 4R
#  118.6 115.4 116.3 1174 117,2 98,4 94,7 96,7 98,1 100+0 98.5 102:3 10156 103,79 1085
s 114,5 115.0 115.8 116.8 116,5 93,4 94,5 96,4 97,2 '08:1 95,7 "97;9 797 8 BA.¥ 1bE.D
TB3; 116.1 114,5 115,0 115.7 115,3 93,4 94,4 95,7 95,2 94,5 90.6 91.6 90,1 B9,6 91,4
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TABLE C-2 (Contd.)

RUN 73 74 75 76 77 78 79 80 81 82
Tol 1754 142,4 192,2 202,1 204.7 210.1 211,3 208,7 213.8 215,4
2 174,8 132,0 190,1 200,8 204,1 210,0 211.1 208,5 213.5 215,0
TBy 174.1 126,2 188,4 199,7 203.4 209.6 210,9 208,3 213.4 215,0
. 175.1 119.9 186,1 197,8 201+9 208.4 209,8 207,2 212.4 214,0
. 173,2 115.0 185,4 197,5 202.0 208,9 210.5 207,8 213.,1 214,7
. 172,6 110.1 183,8 196,4 201.3 208,7 210.4 207,7 213,0 214,7
. 171,7 105,7 181,7 194,8 200.1 207.9 209.8 207,0 212.,5 214,2
. 171.4 102,3 180,3 193,9 199.6 208.0 210.1 207,3 212.9 214,5
T 170.5 99.1 178,1 192,2 198.4 207,2 209.7 206,68 212,4 214,2
©169.6 96,2 175,9 190,7 197.2 206.6 209.4 206,4 212,2 214,0
© 168,7 93,6 173,5 188,7 195.8 205,8 208,9 205,8 211.8 213,6
" 167,4 91,1 170.9 186,5 194.1 204,8 208.3 205,1 211,2 213,2
©  165,9 88,8 168,2 184,3 192.3 203,7 207,7 204,3 210,7 212,7
" 164,9 86.7 165.5 182,1 190.7 202.8 207.4 203,8 210.5 212,6
" 163,2 84,6 162,5 179,5 188,5 201,4 206.6 202,8 209,8 212,2
© 162,1 83,0 159,8 177,2 186.7 200,5 206.4 202,4 209,8 212,2
" 160,1 B81.3 156,5 173,9 184.0 198,6 205,4 201,1 208,9 211,5
T 158,41 79,7 153,0 170,6 181.2 196.6 204,2 199,7 208,0 210,8
T 155,7 78.2 149,3 167,0 177,49 194.3 202.9 197,9 206,8 210,0
" 153.,0 76.8 145,2 162,9 174:1 191.4 201,0 195.5 205.1 208,6
©149,7 75.5 140,7 158,4 169.7 187.8 198,5 192,5 202,7 206,7
T 145,9 74,3 135,9 153,3 164.6 183,6 195,5 188,8 199.8 204,5
" 141.9 73,1 130.6 147,7 158,9 178.6 191.7 184,3 195,9 201,2
T 137,6 72,1 124,6 141,6 15244 172,4 187.0 178,6 191,0 197,1
" 132.8 71,1 117,9 134,4 144.6 164,6 160.,6 171,3 184,4 190,4
Y 127,5 70,2 110.8 126,3 135.9 155.4 172.3 162,9 176.5 182,2
121.7 69,3 103,1 116,5 125.7 144,5 161,4 152,4 166,6 171,5
115.,7 68.5 95,5 106,6 114,5 131,3 147,8 138,8 153.9 161,2
109,3 68,0 87,0 95,9 101.6 113,9 128.5 121,1 132.8 141,1
102.2 67.3 79,1 B5,6 89.7 95.6 106.3 100,8 109,9 117,7
TBy) 90,8 66.5 67,0 69,7 70.8 7044 70.9 68,9 70,2 71.6
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TABLE C-3. Basic Experimental Data for lO-L/Dl Test Section

RUN

Wl Wz WHZO TA1 TA2 TA3 ’I‘A4 TAS TA6 TA7 TA8 TA9 TA]-0

; 384n, 245p, 1340, 145.6 126.9 90.0 118.3 164,4 148,8 164,4 90,0 57.4 61,8
e 3820, 24920. 1335, 16839 14259 9376 13231 176,6" "173,5 " 176,656 93,6/ 58.,4" 63,1
3 J805. 2465, 1345, 197:5 163,1 98,1 149,14 191,9 204,2-191,;9 98,14 58,5 64,0
4 76400, 2435, 1420, 149,38 186,85 U B5.1. 125,07 158,72 Ah{;2 15877 t85 4 ‘58,33 61,5
5 7630, 23Bp, 1420, 169.,5 153,0 89,9 139.7 173,2 171.6 173,2 89,% 59,0 63,4
6 7650 2960. 1430, 1937 17176 95,7 "155,1 ~188.4 ~194,6 188,4 95,7 55,8 6454
7 276, 2490, . 1480, 10444 92.4 90,4 0348 178,1° 1130 178;1 9D& S7,3 61,7
8 1141, “242p 0 1480, - 11648 97,3 89,1 98,0 173,6 161.4 173,6 B8l 581 61,5
9 1560, 2450, 1480, 125,0 103,0 87,9 101,5 169,0 131,9 169,0 87,9 52,2 61,6
10 2300, 2440, 1475, 131,9 110.9 88,1 106,3 162,6 137.,3 162,6 88,1 57,1 60,9
11 8075, 2420, 1475, 137,5 117.7 'B7,1 1141,0 161.,2 “14p.,0 461,2 82,1 57,4 61,3
12 4600, 2410, 1480, 149,7 134,33 B8;3 1213 165,8 152.,2 "165;8 8B, 5l 4 &1.0
13 6100 2450, 1425, 151.4 135,9 AU2 4247 63,1 152,40 168.) B9:P 5,0 ebl 8
14 100560. 2420, 1420, 15546 194.% 89,0 132,2 163,00 154,7 16350 "BOL0 57,01 061 8
15 12500, 2480, 1430, 153,8 144,7 89,5 132,5 '159,5 154,5 159,5 B9.,5 58,2, 61,9
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TABLE C-3 (Contd.)

RUN Wl WZ "HZ 0 TAl TA2 TA 3 TA 4 TAS TA 6 TA7 TA8 TA9 TAl 0
16 1165, 4880, 1420, 132.,8 116.3 112,6 115,3 160,4 142,6 160,4 112,6 58.4 63,4
17 1540, 4850, 1430, 137,0 119.4 111,7 116,2 158,8 145,1 158.,8 111,7 58.3 63,5
18 2300. 4880, 1440, 146,4 127.9 113,1 120,5 160,9 150.9 160,9 113,1 58.4 63,5
19 3035, 4860. 1425, 133,9 121,4 107.2 114,4 152,7 136,8 152,7 107,2 58,5 63,0
20 3830, 4860, 1420, 137,7 125,9 108,8 117,2 153.0 140.,1 153,0 108,8 58.6 63,4
21 4600, 4850, 1430, 139.8 128,4 108,7 118,4 152,5 141,6 152,5 108,7 58.7 63,3
22 6160, 4890, 1430, 142,2 132.0 108,6 120,5 152,0 143,7 152,0 108,6 58.8 63,4
23 7660, 4860, 1430, 137,2 128,2 104,3 116,8 145,3 138,8 145,3 104,3 58,8 63,2
24 10080, 4790, 1475, 14040 132.3 104,0 119,6 145,3 140,8 145,3 104,0 59,8 63,8
25 12380, 4840, 1480, 141.0 {34.2 105,0 121,1 145,7 141,7 145,7 105.0 59,6 63,8
26 da7R . 27820, 1700 A04.D 128,2 118,7 123,5 155,8 159.7 155,8 118.7 59.3 64,0
27 2270, 7280, 1720, 154,5 134.5 120,1 125,5 156,5 159,6 156,5 120.,1 59.2 64,0
28 3060, 7330, 1710, 130,2 121,1 111,4 115,0 145,0 132,4 145,0 111,4 60,4 64,4
29 3790. 7320. 1720, 134,3 125.0 112.,7 117,4 146,2 136.0 146,2 112,7 59.9 64,2
30 4690, 7300. 1725, 136.1 127,1 112,2 118,1 146,0 137.7 146,0 112,2 60,2 64,5
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TABLE C-3 (Contd.)

RUN Wl WZ wHZO TAl TA2 TA3 '].'A4 TA5 TA6 TA7 TA8 TA9 TAlO

31 6090, 7320, 1715, 43943 "130,8°112,8 119.9 “145.6 140,5 146,6 112,8° 60,7 64,9
32 7600, 7300, 1720, 135.0 128,0 109.,9 117,4 141,44 136,3 141;4 109,9 61,3 65,4
33 100500 7350, 1785,: 139.9 - 138,5 -112;9 121,35 144,2 "140,6 T144,2 112:9 80,6 64,7
34 122p0. 7380, 1715, 136.4 130,.9 110,4 118,B  140,3 136,9 140,3 110,4 60,0 63,8
35 750, 1212, - 1420, 1295 85,6 73,8 101.,0 222,0 4139.6 222,0 73,8 60,3 64,3
36 1165, 1212, 1425, "145,4 100,08 - 73,7 115,4 214;4  1%54,9 ~214,4 73,7 A0,5 68,2
37 1530 4200, 1420, 1656y0 -114,0 78,1 3126, 210,0 163,5 210,0 7451 82,0 45.5
36‘ 2290, 1215, 1430, 167,3 132,0 74,5 138,6 204,7 172,6 204,7 74,5 62,3 65,4
39 3030, 1200, 1420, 169.6 139,9 72,8 144,1 197.5 17%3.5 197,5 72,8 81.9 64,8
40 3800, 1190, 1420, 1/4.1 148.2 73,6 150,9 196,9 177.6 196,9 73,6 62,3 65,2
41 4580, 1200, 1420, 172,9 150.,5 72,6 151,8 192,2 175,7 192.,2 72,6 61,5 64,5
42 6100, 1160, 1425, 173:1 155,93 71,3 155,4. 187.5 497%,4 4187,5 71.3 AD.& B33
43 7590, 4220, - 1385, 16847 154,11 70,9 45258 179,48 170.2 179:;4 20,5 53,8 An-a
44 410000. 1210, 1380, 170,9 159,38 70,5 157,1 179,%1 172,3 179;:1 70.5 %59.2 &:.1
45 12200. 1180, 1390, 172,5 162.8 70,8 160,4 179,5 173,4 179,5 70,8 60,0 62.8
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APPENDIX D

Construction of Experimental Apparatus

1 Description of Loop Components

a Pump

Two pumps were used in the course of the experiment. The
first, a Goulds Model 3196 centrifugal pump with a water-cooled, double
mechanical seal, had a capacity of 15 gal of mercury per minute at a total
dynamic head of 35 psi. This pump was used for the experimental runs
with the first test section. After the experimental program with the first
test section was completed, however, mercury began to leak past the me-
chanical seal, making further operation of the pump undesirable. A second
pump, a Chem-Flow Model 1003 self-cooled canned rotor centrifugal pump,
was then installed. After modifications, the Chem-Flow pump was capable
of delivering 3 gal of mercury per minute to the test section. The Chem-
Flow pump was operated for over 6 months without any difficulty

Both of the above pumps were equipped with constant-speed
motors.

Pressure gauges, located on the suction and discharge lines of
the pump, aided in control of the pump-operating conditions

b Flow-control Assembly

Since the pumps were equipped with constant-speed motors, a
flow-control and bypass-valve assembly was used to control the flow of
mercury to the test section. The bypass valve was a 2-in., Teflon-packed,
stainless steel needle-type valve. Three Teflon-packed, stainless steel
needle-type valves were located in a parallel configuration in each of the
lines leading to the test section. These flow-control valves varied 1n size
from 1/4 to 3/4 in. to permit fine control of the mercury flowrate. All
valves in the flow-control assembly were welded in place. The above sys-
tem provided for extremely stable flowrates of mercury, with drifting from
the desired setting generally less than *1% during each experimental run.

c. Cooler

A counterflow, single-pass, double-pipe heat exchanger was
located in the line leading to the annulus side of the test section. Mercury
passing through the tube side of the cooler was cooled by water flowing
through the annulus side. The water flow was provided by a small cen-
trifugal pump which was supplied by a constant-head tank. This arrange-
ment provided extremely steady flowrates of water in the range from
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1IN ta 3 gal/mm The water flowrate was measured by a calibrated orifice-
and-manometer assembly. Bulk temperature measurements at the water
inlet and outlet were made in mixing chambers located close to the inlet
and outlet of the cooler. The cooler was constructed entirely of commer-
cially pure nickel.

d Heaters

Three tubular immersion heaters with stainless steel sheaths
heated the mercury flowing to the tube side of the test section. Each heater
had a maximum power rating of 3% kW at 440 V, three-phase, giving a total
maximum power rating of 10 kW for the assembly. The power input to the
heaters was controlled by a powerstat. The power input was determined by
a measurement of the voltage supplied to each heater, the heater resistances
being known quantities

e Mercury-mixing Chambers

Fluid-mixing chambers were located close to the inlet and out-
let of the tube and annulus sides of the test section to promote mixing of the
mercury stream before the temperatures of the bulk fluid were measured
The fluid temperatures measured were steady, indicating that the baffle-
plate arrangement of the mixing chambers provided for sufficient mixing
of the mercury

i Assembly for Flow Measurement

The mercury flowrates 1n the tube and annulus of the test sec-
tion were each measured by two methods. The first, a calibrated orifice-
and-manometer assembly, was used primarily to calibrate the second, an
electromagnetic flowmeter. The orifice assembly was calibrated with
water prior to installation in the loop. This calibration procedure has been
shown to be quite accurate for liquid metal flow measurements.®! The pres-
sure differential across the orifice plate was measured by means of an in-
verted mercury manometer. In order to cover the wide range of mercury
flowrates desired for the experiment, the electromagnetic flowmeter was
located in series with the orifice assembly. Simply constructed, it con-
sisted of a permanent magnet, with a flux density of approximately 5000 G,
located such that the magnetic field was perpendicular to the direction of
flow. Copper pins were located by compression fittings, such that they
were in direct contact with the flowing mercury. The mercury flow pro-
duced an emf across the copper pins which was directly proportional to
the flowrate. The emf flowmeter was preferred to the orifice arrangement
for actual heat transfer tests, since its range was virtually unlimited com-
pared to that of the orifice assembly. Because of gradual drifting of the
flux density of the permanent magnets, it was necessary to recalibrate the
emf flowmeter from time to time Frequent checks of the accuracy of the
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emf flowmeter indicated that the drifting was quite gradual, and one cali-
bration a week was more than sufficient. The accuracy of the emf flow-
meters is estimated to be within *5% of the actual flowrate.

g. Expansion Chamber

A vented expansion chamber, located at the highest point in the
loop, provided for thermal expansion of the mercury as the operating tem-
perature of the loop was increased. A sight glass was included to permit
visual observation of the mercury level. A high-pressure nitrogen-supply
line leading to the expansion chamber was used to force mercury out of the
loop and into the storage tank.

h. Storage Tank
A vented storage tank of 1-cuft capacity was locatedat the lowest
point of the loop. A high-pressure nitrogen-supply line was used to force
mercury out of the storage tank into the loop. A sight glass proved useful

when filling the storage tank.

i. Piping and Connections

All parts of the loop in contact with the mercury were con-
structed of stainless steel with the exception of the emf flowmeter, copper
pins, cooler, and test section. Conduit used was, for the most part, seam-
less stainless steel pipe or tubing. Due to the high tendency of mercury
to leak, connections were welded whenever possible. In order to disassem-
ble the loop easily for cleaning, however, some of the connections were
flanged. Flanges used were, for the most pa:-t. stainless steel ring-joint
flanges, although stainless flanges with "Flexitallic" gaskets were used
for the pump and heater connections. Manometer connections as well as
drain and vent-line connections were made with compression fittings and
Teflon-wrapped threaded connectors.

J. Insulation and Support

For the experimental tests with the first test section, the entire
loop was insulated with 1-in. fiber glassinsulation. Since it was desired to
disassemble the loop for cleaning from time to time, only the heater, cooler,
and test section were insulated for the experimental runs with subsequent
test sections.

The entire loop was supported by a framework of Unistrut ad-
justable metal framing.
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2. Control of Experimental Apparatus

a General Loop Control

The operating conditions for each experimental run depended
on the mercury flowrates in the tube and annulus of the test section, the
rate of heat input to the tube stream by the heater, and the rate of heat re-
moval from the annulus stream by the cooler. The desired flowrates were
obtained by careful adjustment of the valves in the flow-control assembly.
The outputs of the emf flowmeters were read on a Hewlett-Packard
Model 2401C integrating digital voltmeter accurate to 5 pV. The digital
voltmeter permitted a continuous visual observation of the flowrates. The
rate of heat input from the heater was determined by measuring the voltage
supplied to the individual heating elements with the resistance of each a
known quantity A wattmeter gave an approximate value of the power level
of the heater assembly The rate of heat removal by the cooler was deter-
mined by the water flowrate, and measurements of the inlet and outlet water
bulk temperature. The water flowrate was measured by the calibrated
orifice-and-manometer assembly

A general indication of the temperature level of the loop was
obtained by periodic temperature measurements at various points of the
flow circuit

b Safety Control

Because of the high toxicity of mercury vapor, the entire loop
was built in a ventilated enclosure. An exhaust fan ducted to the outside
of the building prevented mercury vapors from escaping from the enclosure
To catch spilled mercury, the entire apparatus was located over a leak-
proof stainless steel pan A mercury-vapor detector was used to monitor
the level of mercury vapor present in the enclosure.

To prevent overheating and possible boiling of the mercury,
the power supply for the heater was interlocked with the pump control so
that the heaters would operate only when the pump was running. A tem-
perature controller was included to shut the heater off if the heater wall
temperature exceeded a predetermined value, usually in the neighborhood
of 230°F

A mercury-level probe located in the top of the expansion tank
was interlocked with the pump control to shut off the pump, and hence the
heaters, if the mercury dropped below its normal level. An alarm bell was
also activated if the mercury level dropped



Because of the necessity of providing a cooling water flow for
the mechanical seal of the first pump, a flow switch was interlocked with
the pump control. The pump and heaters could not be turned on unless a
cooling water flow in excess of 1 gpm was delivered to the mechanical
seal. The second pump was a self-cooled type, so the flow switch was
disconnected when the first pump was removed.
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APPENDIX E

Analysis of Experimental Errors

1. Expected Maximum Error

If a quantity is a function of several variables, it may be written
O b T (E.1)

If Q is subject to error because of errors in the independent variables,
this error may be expressed as

n S
I Lo .2

o] z % bi (E.2)
where

6; = error in x;;

6Q = resultant error in Q.

Since some of the 6; are likely to be positive and others negative,
the resultant error in Q will generally be less than the sum of the absolute

values of the terms in Eq. (E.2). This necessitates the use of the square of
the errors as an indication of the magnitude of the resultant error:

n n
2 ShaE 25 of of
6Q = i (—ax) o3 + Z [‘rx 63 St 6_]' 4
=l e =1 B g1 B
i#
If the positive and negative errors are equally distributed, the term

on the right will tend, on the average, to disappear, leaving the following ex-
pression as an estimate of the "expected maximum error":

n 1/2
o[ "
1=1

2. Errors in H and Temperature Differences

a. Errors in H
R

The accuracy of the emf flowmeters, as mentioned in Ch. 1V, was
estimated to be *5%. This maximum error effects the completion of H in
the following manner:
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oy
1

W,/ Wy
OH \? .2 oH \? 5o
[(a—vr,) s, + (3v%) 6%]
1/
(Wz)z 6%’,1 + (wz)z 6%\’2 :
Wl w% Wl Wg-

WZ 1/2
= e— 2 2
- 3-1(0.05) + (0.057]
= 0.0707 H = expected maximum error in H. (E.4)

b. Errors in AT

The accuracy of the temperature measurements, as mentioned
in Ch. IV, was estimated to be ¥1/2°F. This maximum error effects the
computation of temperature differences in the following manner:

AT =.T; - Tj;

1/2
JAT\? JAT\?
sAT [('a_r') “rﬁ(a—Tj) %‘]
g " 1/2
- (6% + o)

1/2
{0.5%+0.5%) .

= 0.707 = expected maximum error in AT. (E.5)

3. Errors in Efficiency

The heat-exchanger efficiency was calculated from the following
relationships:

H< 1
AT, + HAT,
AT,

H>1
AT, + HAT,
€ = TTmaie o

2T
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where
FATER =N (1)) P (V)
BT, = Tylo)-
A= (08 S ()

Application of Eqgs. (E.3), (E.4), and (E.5) to the above yields the
following for the expected maximum error in €:

H<I1:
[0.5(1 + H2 + 4H22) + 0.005AT,]"?
(56 ik 2HAT (E6a)
0
H > 1 :
1/2
[0.5(1 + H? + 4€®) + 0.005H%AT3]
S mas (E.6b)

28T,

The expected maximum error for € in all of the experimental runs
is tabulated in Table E-1.

4. Errors in NujrFD

The fully developed overall Nusselt number was computed from

H
NuiFDp = T B (3.42a)

H
NujFD = ﬁkf (3.42b)

where [3% and Af were the slopes of the linear portion of the graphs of S
vs. Z. Now,

H<I:

0
1l

In [gz(l,z) +§1(1-—-H€).} (E.7a)

sl

S = ﬂn[g : T - ﬁz(l,z)]: (E.7b)
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TABLE E-1. Expected Maximum Error for Efficiency

be /€ (%) Run be b/ (%)
lO-L/D, Test Section

1 0.0230 4.4 24 0.0292 6.6

2 0.0219 4.1 25 0.0332 7.1

3 0.0203 3.9 26 0.0623 857
4 0.0297 4.7 27 0.0404 7.4

5 0.0284 4.4 28 0.0544 11.5

6 0.0263 4.1 29 0.0404 9.9

7 0.0967 119 30 0.0326 8.6

8 0.0423 6.1 31 0.0253 7.9
9 0.0292 5.0 32 0.0242 8.2
10 0.0209 4.5 33 0.0263 3
11 0.0221 4.5 34 0.0304 9.0
12 0.0246 4.4 35 0.0320 4.1
13 0.0273 4.6 36 0.0233 3.8
14 0.0343 5.1 37 0.0248 3.8
15 0.0386 5.6 38 0.0272 3.9
16 0.0816 11.8 39 0.0296 3.9
17 0.0532 8.5 40 0.0319 4.0
18 0.0319 6.2 41 0.0337 4.1
19 0.0316 7.0 42 0.0373 4.3
20 0.0255 6.6 43 0.0405 4.6
21 0.0217 6.2 44 0.0452 5.0
22 0.0230 6.2 45 0.0506 5.4
23 0.0267 6.6

47-L/D, Test Sectjon

43 0.0382 4.1 63 0.0389 4.0
44 0.0328 4.1 64 0.0357 3.7
45 0.0293 4.1 65 0.0331 3.6
46 0.0264 4.0 66 0.0293 3.7
47 0.0289 4.2 67 0.0300 3.7
48 0.0316 4.2 68 0.0327 3.8
49 0.0329 4.2 69 0.0343 3.8
50 0.0349 4.3 70 0.0363 3.9
51 0.0827 8.4 71 0.0378 3.9
52 0.0580 5.8 72 0.0384 4.0
53 0.0468 4.9 73 0.0402 4.1
54 0.0842 8.9 74 0.0354 3.6
55 0.0557 6.2 75 0.0315 3.5
56 0.0449 5.3 76 0.0356 3.7
57 0.0395 5.0 77 0.0372 3.7
58 0.0348 4.8 78 0.0385 3.8
59 0.0296 4.8 79 0.0400 4.0
60 0.0277 4.8 80 0.0373 3.8
61 0.0295 4.8 81 0.0405 4.1
62 0.0321 4.9 82 0.0440 4.4




where
1.2) = T(0) - Ta(rzs, £)

€2(1,2) = ATs .

The standard least-squares fit was used to obtain the best fit for
the data points, and the slope of the approximating line was taken to be
the value of p# or A} depending on the value of H. The expression for the
slope of the least-squares line was

S ErEe)

1=1 =1

2
TEBL

n 2
2
o) i)
3=1 1=1

Because the temperature data for the outer wall were taken at equal
intervals and z; therefore had a constant increment, the above equation can
be simplified to yield

n
>‘f‘”ﬁ%:(n-l) n+l Z (

1=1

M)z

) Si, (E.9)

where
n--numbers of data points;
Az--increment of z;.
The expression for the Nusselt number becomes
Bl

= RN 12 > [ axld H(1 -
NW{FD = 7o H - D(n)nt1) bs Z:l (1 - g ) In [f;z(l,z)*' (l- ;].

(E10.a)

) [Bog . g0.a),

(E10.b)

R ~
NUFD = 7 -1F1)(n)(n+1 Z(

1=1



or
H<C 1:
" Wil 12 Bl iy ATw.(1-H) + HATo(1-€)
pnprs = l-l-{(n-l)n(rwl)Az,Z (" Z)Z" : ATo(1-H) . (Ella)
i=1
H>1:
- & n (H- €) AT, - ATw.(H-1)

Nu® & . n+ 1

MFD *H_T({n-1)nn+1) Az lgl (l' 2 )1"[ ATO(H-ll) ] (E11.b)
where

ATw, = Ti(0) - Ta(rz. k).

Because of the fact that

(Z" (n + l)
4 = 0, (E.12)

the expression for Nujpp may be further simplified:

H<Cl:

n

. H 12 , 1
NFD = TR T a1 o ‘zl ( ) n; )zn [«rwi(l-H)+ HATD(l-z)]; (E13.a)

H>1:

n
- g 12 a4l
NUFD = HF1 fm-Dnm+1) b2 iz=| (l' z ) tn [(1-€) 8T, - 6Tw (-] (E13.b)

The expected maximum error of the logarithmic term in the above
summations was computed, these errors summed, and the error in NuiFD
computed from the following expression:

H S1:
. 1/2
1 144H
By =+ 0.005 NujFp® + ozl (E.14)
NuiFD |H- 1|[ (n-1) n¥(n+1)? Az?
where

&5, - -expected maximum error of the summation in Egs. (E.13a-b).
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The expected maximum error for Nujpp for the experimental runs
with the 47-1/D, test section is tabulated in Table E-2.

TABLE E-2. Expected Maximum Error for Nusselt Number
47-1L/D, Test Section

Run  ONwpp ONuwpp/NWFD (%) | Run  Snwpp ONujpp/NWFED (%)
43 0.814 16.8 63 1.166 28.5
44 0.706 13.9 64 0.739 16.6
45 1.463 27.2 65  0.620 13.4
46 6.840 123.4 66 2.655 52.8
47  2.208 35.7 677 2.214 41.3
48 1.309 19.6 68  1.074 19.3
49 1.090 15.4 69  0.886 15.1
50  0.994 13.6 70 0.785 12.4
51  4.654 118.1 71 0.740 11.0
52 1.137 28.5 18- 05 10.2
53  0.726 15.8 73 0.743 9.9
54  2.413 49.2 74 1.334 31.5
55 3.081 64.0 75 1.637 29.2
56 1.444 28.4 76 0.786 15.1
57 0.720 14.0 77 0.644 12.3
58 0.708 12.7 78 0.578 9.7
59  2.262 37.3 79 0601 8.6
60  13.223 192.8 80  0.598 9.1
61 2.727 37.7 81  0.621 8.3
62 1.678 22.9 82  0.629 8.0
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